HATE, FEAR AND INTERGROUP CONFLICT

Experimental Evidence from Nigeria

Miguel Ortiz*

Princeton University

November 30, 2024

Abstract

This paper studies to what extent social conflict between identity groups is driven by hate (preferences for harming the outgroup) vs. fear (subjective beliefs about the outgroup's hate towards one's ingroup), and how policy interventions affect these drivers to increase cooperation. To this end, I develop a theory-based experimental protocol to empirically disentangle these two motives and determine their relative importance. I deploy this protocol as a lab-in-the-field experiment in Jos, Nigeria, to study the city's ongoing conflict between Christians and Muslims. I find that fear explains 76%, and hate 24%, of the non-cooperative behavior between Christians and Muslims. Moreover, this fear is mostly unwarranted, as non-cooperators grossly exaggerate the percentage of hateful people in the outgroup. I then estimate a structural model to determine what type of policy intervention would most effectively increase cooperation. My counterfactual analysis suggests that interventions that correct unwarranted fears would be highly effective, while interventions that reduce hate would not because hateful people tend also to be very fearful. Finally, I study a real-life intervention with an RCT on a radio drama that promotes intergroup cooperation. Using my experimental protocol, I find that the radio drama decreases hate but not fear and therefore does not increase cooperation, as my model predicted.

^{*}miguelortiz@princeton.edu. I am especially grateful to Ernesto Dal Bó and Francesco Trebbi for their generous support and guidance in this project. I am also grateful to Ned Augenblick, Matilde Bombardini, Fred Finan, Sam Kapon, Ted Miguel, Ryan Oprea, Ricardo Pérez-Truglia, Jonathan Weigel and Guo Xu for their comments and support. Eunice Boba Atajiri did an outstanding job as the field manager of the experiments. I gratefully acknowledge the funding provided by the Association for Comparative Economic Studies, the Center for Effective Global Action, the Center for Equity, Gender & Leadership, and the Institute for Business Innovation. The pre-analysis plan of this paper is available at *socialscienceregistry.org/trials/10605*.

1. Introduction

Societies are often fractured into social identity groups, like ethnicities or religions, which can result in substantial economic losses (Easterly and Levine, 1997; Alesina and La Ferrara, 2005). Fractionalization and polarization give rise to "ingroup" vs. "outgroup" dynamics that are usually characterized by hostile behavior and social conflict (Tajfel and Turner, 2004). These hostilities can take many forms, encompassing labor discrimination, the curtailment of civil rights and access to public goods, segregation, and even war and genocide. Despite this being a recurrent pattern in history and across the globe, we still lack clarity on what motives drive citizens to support hostile actions against the outgroup and fuel social conflict.

Studying the individual-level drivers of conflict is hard, because there are many potential motives, few with a clear definition that distinctly separates them from the others, and even fewer with an empirical measure. To make progress, I focus on the fundamental partition of motives for action that is preferences vs. beliefs. Support for hostilities may be rooted in preferences: individuals harbor *hate* towards the outgroup and want to harm them. Alternatively, support for hostile behavior could stem from beliefs: individuals do not hate the outgroup but *fear* that the outgroup wants to harm them, causing them to support hostile actions to protect themselves. This fundamental distinction is of high importance, as different drivers of conflict will call for different types of policy interventions. Nevertheless, hostile behavior is an equilibrium outcome, making it empirically challenging to disentangle the preferences and beliefs that might be driving it.

This paper seeks to answer two questions. (1) To what extent is intergroup conflict driven by hate vs. fear? I define hate as a *preference* for harming the outgroup, and fear as a *belief* about the outgroup's hate towards the ingroup. I conceptualize social conflict as a manifestation of non-cooperation, in the tradition of Fearon and Laitin (1996). Here, I further inquire: To the extent conflict is driven by fear, is this fear warranted? That is, are beliefs about the outgroup accurate, or are they misperceptions? After understanding what drives social conflict, I connect this diagnosis to real-life policy and ask: (2) Why interventions that are currently trusted to promote cooperation may or may not be effective? Here I focus on cultural media interventions (CMIs), a popular type of intervention in Africa that is used to tackle different social issues (Banerjee et al., 2020) and has received increased attention as a policy tool to mitigate conflict (e.g., in Rwanda (Paluck, 2009)). In particular, this paper studies radio drama series, a prime example of CMIs.

To answer question (1), I develop a theory-driven experimental protocol to empirically disentangle the preferences and beliefs that drive hostile action and assess their relative importance. Then, I deploy this protocol as a lab-in-the-field experiment in Jos, Nigeria, to study the city's ongoing conflict between Christians and Muslims. Jos is a city where Christians and Muslims have lived together for over a hundred years, but in the past 20 years, the city experienced multiple outbreaks of religious violence perpetrated by ordinary citizens from both sides. These events led to a process of religious segregation in all aspects of life. Today, there is little interaction between the groups, religion is the key political cleavage, and politicians fuel negative narratives about the outgroup for political gain.

I start by building a model of conflict, with hate and fear as primitives. I model conflict between groups as a coordination game, where cooperation is a Nash equilibrium that offers the highest possible payoff to each player. In this game, players may prefer to not cooperate if they feel enough hate for the outgroup—that is, if a player prefers to sacrifice part of her payoff in order to reduce the payoff of the outgroup player by a greater amount. Alternatively, non-cooperation may stem also from fear. A player who is not hateful but fears the outgroup player is hateful (and therefore non-cooperative) will also want to not cooperate to reduce her losses. Because fear is a subjective believe and may be inaccurate, fear alone can drive conflict and it is therefore a distinct driver separate from hate. The model, therefore, explicitly distinguishes between the roles of hate and fear in driving non-cooperation.

In the field, I measure cooperation between Christians and Muslims through coordination games. However, not cooperating is an equilibrium outcome that is driven by both preferences and beliefs. To disentangle these drivers, I use the following insight when designing the experimental protocol. For each coordination game that subjects could play, it is possible to design a money allocation decision that mirrors the payoff structure of the coordination game but removes the uncertainty in outcomes, such that beliefs do not enter the decision problem, only preferences. In this way, the money allocation decision isolates the preferences that play a role in the decision in the coordination game. With this in mind, in the experiment I ask participants to make a series of money allocation decisions that elicit their willingness to pay to decrease or increase the payoff of an outgroup member. This allows me to recover the level of hate (or altruism) in a way that is directly connected to their decision in the coordination game. To elicit fear, I ask participants to guess the money allocation decisions of other participants to identify their beliefs about the outgroup members' level of hate. I then use the information collected to estimate a structural model to recover social preferences at the individual level. Using the estimated preferences and elicited beliefs, I am able to determine the extent to which non-cooperation is driven by hate vs. fear. I then use the estimated model to conduct counterfactual analysis and study how policy interventions that shift hate or fear would affect cooperation levels in this context.

The first result is that in a game where mutual cooperation is an equilibrium and yields the maximum payoff (which represents half a day of salary in this context), people fail to cooperate in 31% of the interactions between groups—compared to only 6% of interactions within groups. This leads to a loss of 9.6% of attainable payoffs in intergroup interactions. I estimate the model and find that it performs well in terms of sample fit: the hate and fear elicited from participants explain over 90% of the decisions to cooperate or not. The estimated model leads to three main findings. First, 24% of non-cooperation decisions are motivated by hate, while 76% are motivated by fear. Second, fear is mostly unwarranted, as non-cooperators grossly exaggerate the percentage of hateful people in the outgroup. Third, hateful individuals tend to also be very fearful of the outgroup, while altruistic individuals show a wide range of beliefs, from fearful to trusting. The counterfactual analysis reveals that if a policy solved unwarranted

fears by correcting inaccurate beliefs about the outgroup, 94% of the people not cooperating out of fear would switch to cooperation. This result underlines how misperceptions leading to unwarranted fears are the most important barrier to intergroup cooperation. In contrast, if a policy completely eradicated intergroup hate, none of the people not cooperating out of hate would switch to cooperation. The effect on cooperation is null in this case because hateful individuals are also very fearful and therefore, even without hate, all of them will still want to not cooperate out of fear.

Importantly, I validate my measures of hate and fear by showing how they correlate with support for a real-life hostile action against the outgroup—religious segregation. What is more, my measure of hate correlates more strongly with support for segregation for hateful reasons, while my measure of fear correlates more strongly with support for segregation for fearful reasons. Furthermore, I find important differences in the way Christians and Muslims behave. Specifically, 84% of the decisions to not cooperate come from Christians and 16% come from Muslims. Additionally, Christians are more hateful towards Muslims and have more biased beliefs about them than the other way around. These results are in line with what was predicted in the pre-analysis plan, as I expected heterogeneity in this direction based on extensive fieldwork.

Having understood what drives intergroup conflict, I turn to question (2) and use my protocol to study why cultural media interventions may or may not be effective at increasing cooperation. To this end, I conduct an RCT where I randomly give participants access to a radio drama series that promotes intergroup cooperation, and evaluate its effects on hate, fear and cooperation. Radio dramas are both a popular form of entertainment in Sub-Saharan Africa and a common intervention used by NGOs in the region. Recently, they have received increased attention as a policy to mitigate conflict due to their perceived advantages: (i) fictional stories make it easier to address sensitive topics of conflict (Slater and Rouner, 2002); (ii) stories increase attention and retention of the message (Kromka and Goodboy, 2019); (iii) they are inexpensive to produce and require minor logistics to implement, relative to other popular interventions to mitigate conflict.

To study this policy, I partnered with the production company hired by the largest NGOs in Nigeria, and we produced a new radio show following the exact same steps NGOs take to produce their shows. The new radio drama aimed to reduce both hate and fear: the story is about two communities that, driven by hate and unfounded fears, miss out on mutually beneficial interactions, and its resolution has a message on letting go of hate and reevaluating fear. The treatment consisted of 24 episodes, each lasting between 10-15 minutes. The show was not broadcasted, but instead episodes were sent to participants through WhatsApp, four times a week over a six-week period. To promote and monitor engagement, participants were incentivized to answer weekly quizzes on the show's content. The control group listened to a placebo radio drama with a message on health. At endline, participants went through the lab-in-the-field experiment again, which allowed me to study the effects of the intervention on hate, fear and cooperation.

I find that the radio show treatment is effective at reducing hate (by 0.45 SD), but ineffective at

reducing unwarranted fears. Furthermore, the treatment proves ineffective at increasing cooperation. The previous diagnosis on the drivers of conflict allows to rationalize what could have otherwise been a puzzling result. The radio show is an effective policy because it reduces hate, but it is inefficient at achieving its main goal (increasing cooperation), because of the structure of the drivers of conflict in this setting. In a place where fear is the main problem and in addition hateful people tend also to be very fearful, an intervention that is only effective at reducing hate will struggle to increase cooperation. This result also highlights how unwarranted fears is not only a bigger problem than hate, but also one that seems harder to solve.

Beyond this, I find that the effect on hate is strongest in the most hateful subsample—a result that was not obvious *a priori*, as the most hateful individuals could have had also more rigid preferences. On the fear side, however, I do not find any treatment effects on any subsample. Importantly, I show the main result is not likely driven by social desirability bias, following the methodology in Dhar et al. (2022).

This paper makes three main contributions. First, it presents a theory-driven experimental protocol to empirically disentangle hate and fear in a way that proves useful at explaining conflict behavior and policy efficacy. The literature has provided evidence of how group membership affects preferences and beliefs (for reviews see Shayo (2020) and Charness and Chen (2020)). Concerning preferences, group membership has been shown to affect social preferences positively and negatively (Chen and Li, 2009; Fershtman and Gneezy, 2001; Kranton et al., 2020; Enke et al., 2023). Concerning beliefs, group membership has been shown to affect trust, stereotypes and prejudice (Bénabou and Tirole, 2011; Falk and Zehnder, 2013; Bonomi et al., 2021). This paper builds upon the findings and tools of this literature to develop a theory of intergroup conflict and an experimental protocol to estimate the parameters of the theory.

Second, this paper provides well-identified evidence on how unwarranted fears can be an essential driver of conflict (even more than hate)—and how policies may struggle to correct these fears. This evidence directly contributes to the theoretical literature on fear and conflict (Chassang and Padró i Miquel, 2007; Padró i Miquel, 2007; Acemoglu and Wolitzky, 2023). In addition, this finding provides evidence on the moral foundations of conflict, something well established in social psychology (Fiske and Rai, 2014) but scant in the economic study of conflict (Rohner, 2024; Blattman, 2023; Esteban et al., 2012; Choi and Bowles, 2007). Furthermore, because I use a general framework of cooperation, these findings could help explain what drives conflict behavior in multiple other spheres of intergroup interaction, like trade (Korovkin and Makarin, 2023; Anderson, 2011; Jha, 2013), labor selection (Oh, 2023; Giuliano et al., 2009), public spending (Luttmer, 2001; Franck and Rainer, 2012; Hodler and Raschky, 2014; Kramon and Posner, 2016), and economic performance (Hjort, 2014; Ghosh, 2022; Marx et al., 2021; Alesina and La Ferrara, 2005).

Third, this paper provides experimental evidence on the effectiveness of using cultural media as an intervention to foster intergroup cooperation. This evidence contributes to the literature on policies to

improve cooperation between groups in conflict (for a review see Paluck et al. (2021)). Some of the interventions that have attracted academic attention lately are intergroup contact (Lowe, 2021; Rao, 2019; Mousa, 2020; Scacco and Warren, 2018; Paluck et al., 2019), perspective taking (Alan et al., 2021; Adida et al., 2018) and the use of narratives (Broockman and Kalla, 2016). The existing literature, however, lacks clarity regarding the mechanisms through which these interventions operate (Paluck et al., 2021). This paper sheds light on these mechanisms. In addition, my finding relate to the research on media and its effects on social and economic outcomes (for reviews see DellaVigna and La Ferrara (2015) and La Ferrara (2016)). More specifically, it contributes to the work studying how media influences attitudes of people in conflict situations (Yanagizawa-Drott, 2014; Adena et al., 2015; DellaVigna et al., 2014; Paluck, 2009).

The rest of the paper proceeds as follows. Section 2 presents the theory that guides the design of the experimental protocol. Section 3 presents the experimental protocol. Section 4 presents the setting where I deploy the experimental protocol. Section 5 describes the data collection process. Section 6 presents the results of the calibrated estimates (which will also motivate the need for a structural model). Section 7 presents the structural model and estimation strategy. Section 8 presents the results of the structural estimates and the counterfactual analysis. Section 9 turns to real-life policy analysis and presents the RCT on the radio show. Section 10 presents the results of the RCT. Section 11 concludes with a discussion.

2. Theory

This section presents the theory that guides the design of the experimental protocol.

Consider a society with two groups, I (the ingroup) and O (the outgroup). Let i be a member of group I, and j a member of group O. When interacting with j, i has the the following utility function:

$$u_i = x_i + \beta_i(Z_i) \cdot x_j \tag{1}$$

Where x_i is *i*'s payoff, x_j is *j*'s payoff, and $\beta_i \in [-1, 1]$ is *i*'s parameter of social preferences towards members of group O. If $\beta_i < 0$, *i* is hateful towards members of group O; if $\beta_i > 0$, *i* is altruistic towards members of group O; if $\beta_i = 0$, *i* is selfish when interacting with members of group B. The bounds assumed on β_i signify that *i* can not care about *j* more that she cares about herself. Z_i indicates a vector that can include multiple relevant individual characteristics like, for example, having been a victim of violence. In what follows, I take Z_i as predetermined, but an alternative model can be found in Appendix A1, where β_i is endogenous and depends on the beliefs about β_j . In addition, the Appendix A1 contains a model extension where *j* can belong to the ingroup or the outgroup, and *i* has different social preferences for each case.

I model social conflict as a coordination game (a.k.a. stag-hunt game) (as in Chassang and Padró i

Miquel (2007); Acemoglu and Wolitzky (2023); Rohner et al. (2013)) where players can *Cooperate* (C) or *Not Cooperate* (N), and failure to cooperate represents the conflict state (in the tradition of Fearon and Laitin (1996)). Coordination games can allow for a richer study of the reasons behind conflict because in it cooperating represents the maximum attainable payoff for each player and is an equilibrium—so failure to cooperate is not driven by own-payoff maximization, as in the prisoner's dilemma. For directness, I illustrate the theory with the following coordination game, which is the one subjects play in the experiment (where payoff units are in Nigerian naira). Payoffs in the matrix represent x_i and x_j in the utility function.

Example 1				
	С	N		
С	1000,1000	500,900		
N	900 , 500	750 , 750		

Players *i* and *j* face each other in the coordination game like the one of Example 1. In the case where there are no social preferences, $\beta_i=0$, the game has two equilibria: (C, C) and (N, N). The equilibrium (C, C) gives each player the highest possible payoff in the game, but carries some risk: if *j* decides to play *N*, then *i* would get the lowest possible payoff in the game.

There are two reasons why a player would choose N as her strategy. Before delving into them, notice that all players, regardless of their social preferences, prefer to not cooperate when the other player does not cooperate. That is, for all β_i , $u_i(N, N) > u_i(C, N)$.¹ Intuitively, even if i is fully altruistic and has $\beta_i=1$, she would still prefer to play N if j plays N, because doing so increases her payoff more than it reduces j's payoff (i.e., she increases the sum of both payoffs).

A first reason to choose to not cooperate is because a person has particularly strong hateful preferences towards the outgroup. To see this, we need to characterize when a person will want to not cooperate even if the other player is going to cooperate. In other words, we characterize the conditions under which $u_i(N, C) > u_i(C, C)$. In our example,

$$u_i(N, C) > u_i(C, C)$$

 $900 + \beta_i 500 > 1000 + \beta_i 1000$
 $\beta_i < -0.2$

Define the threshold $T \equiv -0.2$. If *i* is hateful beyond the threshold, she will prefer to not cooperate regardless of what *j* will do. That is, if $\beta_i < T$, *N* is a dominant strategy for *i*. In the case of Example 1, $\beta_i < T$ means that *i* is hateful enough to prefer to lose 100 and reduce *j*'s payoff by 500. When $\beta_i < T$, we say that *i* chooses to not cooperate out of hate.

¹Proof: $u_i(N, N) > u_i(C, N) \Rightarrow 750 + \beta_i 750 > 500 + \beta_i 900 \Rightarrow \beta_i > 5/3$. Because $\beta_i \in [-1, 1]$, it is always the case that $\beta_i < 5/3$.

A second reason to not cooperate is because a person fears that the other player may have particularly strong hateful preferences. If *i* believes that *j* is hateful beyond the threshold ($\beta_j < T$), then *i* believes that *j* will not cooperate. And if *j* will not cooperate, then *i* will prefer to not cooperate as well, regardless of how altruistic she might be (i.e., $\forall \beta_i$, as shown above). When *i* believes that $\beta_j < T$, we say that *i* chooses to not cooperate out of fear.

Of course, player *i* might not be sure if the other player will cooperate or not. Instead, she forms believes about the probability that the other player will not cooperate, given that *j* is a member of *O*. Let s_i be *i*'s strategy, and $\tilde{P}_i(s_j=N)$ be *i*'s subjective belief about $P(s_j=N)$, the probability that *j* will not cooperate. Then *i*'s expected utility of choosing s_i is:

$$W_i(s_i) = \tilde{P}_i(s_j = N) \cdot u_i(s_i, N) + \tilde{P}_i(s_j = C) \cdot u_i(s_i, C)$$
(2)

Given this, *i* chooses to not cooperate if $W_i(N) \ge W_i(C)$. In the case of Example 1, solving for $\tilde{P}_i(s_j=N)$ yields the following.

$$\tilde{P}_i(s_j = N) \ge \frac{u_i(C, C) - u_i(N, C)}{u_i(C, C) - u_i(N, C) + u_i(N, N) - u_i(C, N)}$$

$$\tilde{P}_i(s_j = N) \ge \frac{100 + \beta_i \cdot 500}{350 + \beta_i \cdot 350}$$
(3)

The condition above determines how fearful a person must be in order to not cooperate. Importantly, this depends on i's social preferences. The condition shows that the less altruistic a person is, the less fearful she needs be to want to not cooperate out of fear.

Lastly, a third reason to not cooperate could stem from higher-order beliefs. That is, *i*'s beliefs on *j*'s beliefs, and so on. Consistent with the evidence from the fieldwork and the findings of the experimental literature (Rubinstein, 1989; Kneeland, 2015), in the empirical model I will assume that participants of the experiment do not form higher-order beliefs when playing the game—i.e., they are limited to k=1 level reasoning. This means that from *i*'s perspective, *j* will want to not cooperate if, and only if, *j* is hateful enough ($s_j=N \Leftrightarrow \beta_j < T$). This has the following important implication:

$$P_i(s_j = N) = P_i(\beta_j < T)$$

In Appendix B2 I provide evidence that, in line with the experimental literature, participants in this experiment do not seem to form higher-order beliefs, and that preferences and first order beliefs explain almost all the variation in the cooperation decisions. Therefore, this assumption appears to be the best representation of behavior.

One last important thing to note is that it can very well be the case that $\tilde{P}_i(\beta_j < T) \neq P(\beta_j < T)$, and in particular that $\tilde{P}_i(\beta_j < T) > P(\beta_j < T)$. That is, believes about the outgroup's level of hate do not have to match reality and they might be exaggerated. In other words, fears might be unfounded. Importantly, this implies that fear alone can drive conflict, even if in reality there is no hate at all—all it takes is for people to *believe* that the outgroup has hate. Thus, fear is a distinct driver of conflict separate from hate.

3. Lab experiment design

This section presents the experimental protocol that identifies the drivers of non-cooperation. Following the theory, three pieces of information are needed from each person in the experiment: (i) the decision to cooperate (s_i) ; (ii) the social preferences towards the outgroup (β_i) ; and (iii) the beliefs on the probability that an outgroup member has social preferences below the threshold $(\tilde{P}_i(\beta_j < T))$. The key is to collect these pieces of information in a way that directly connects them to each other.

3.1. Identification strategy to disentangle the motives for non-cooperation

To disentangle the primitives that play a role in the equilibrium outcome, I use the following insight when designing the experimental protocol. For each coordination game that participants in the experiment could play, it is possible to design a money allocation decision that mirrors the payoff structure of the coordination game but removes the uncertainty in outcomes, such that beliefs do not enter the decision problem, only preferences. In this way, the money allocation decision isolates the preferences that play a role in the decision in the coordination game. To clarify the intuition for identification of preferences vs. beliefs, consider the following example.

In the money allocation decisions, one participant is the decision-maker and gets to pick between the payoffs in Option 1 or Option 2, while her match is a receiver. Without imposing any structure on the utility function, we can categorize people into two groups by examining together their decisions in the two situations above. If a participant prefers Option 2 to Option 1, she reveals her preferences are hateful enough to want to sacrifice 100 to lower the payoff of her match in 500. This in turn reveals that in the coordination game she would want to not cooperate out of hate—that is, she would want to not cooperate even if she knew her match was going to cooperate. We can infer this because the money allocation decision presents to the participant exactly that scenario. If, instead, the participant prefers Option 1 to Option 2 in the money allocation decision, she reveals that she does *not* have preferences that are hateful enough to want to not cooperate out of hate in the coordination game. Therefore, if a participant prefers Option 1 to Option 2, but in the coordination game decides to not cooperate, it must be that believes are driving her non-cooperative decision.²

As I explain in detail below, although the experimental design is based on this logic, what participants do in the experiment is somewhat more complex: they play a couple of coordination games; they face a series of money allocation decisions, which allows me to determine not only if they are above or below a certain threshold of hate but also how hateful or altruistic are they exactly; and they make guesses on other participants' money allocation decisions, which elicits how hateful or altruistic they believe the outgroup to be.

3.2. The experimental protocol

Experiment set up

With the insight from above in mind, the lab experiment proceeds as follows. First, participants are told there are two groups, the Blue Group and the Green Group, and that they will play with one group first and then the other. Before playing with each group, they are shown the list of names of all the members of the group, and are told that they will be randomly matched and play with one of the members of the group but won't know which one. Each group consists of ten individuals who made their decisions in advance. Crucially, the names in the Blue Group are all Christian names, while the names in the Green Group are all Muslim names. In Nigeria, names are a clear signal of religious affiliation, so participants can easily identify that the common characteristic of the members of each group is religion (full details on the setting are presented in Section 4). After playing a set of games with the group that was first revealed, participants are then shown the list of names of the second group and proceed to play with that group. By the end of the experiment, participants have played the same set of games with each group.

This design has two advantages. First, using names to signal religion allows me to not mention religion explicitly, which helps reduce experimenter demand effects³. Second, by not knowing exactly who their match is within the group, participants are forced to think about the average behavior of the members of the group, of which the only discernible shared characteristic is religion. In this way, one can control for any other characteristic a name could signal, like gender, age cohort, etc.

Importantly, there was no deception in this experiment. The names in the Blue and Green groups belonged to real people who were sampled from the pilot of the experiment and made their decisions in advance. In addition, the payoffs of one of the games played was implemented, and participants were

²If no structure is imposed on the utility function, an underlying assumption in this analysis is that if a person believes the other player will not cooperate, they will prefer to not cooperate too.

³For more on experimenter demand effects see Appendix C1, where I show that the results presented in Section 8.1 are robust to controlling for this, following Dhar et al. (2022).

informed that that game would be picked at random at the end of the lab experiment. Lastly, the names of participants (that were not from the pilot) were never recorded, to lower demand bias.

Eliciting social preferences

After participants are matched with an anonymous person from the first group shown to them, they start the activities of the experiment with a series of money allocation decisions. There are 20 money allocation decisions a participant could potentially face. In half of the 20 money allocation decisions a participant could face, Option 2 represents the hateful option of reducing the match's payoff in N500 naira⁴, at a cost to the decision-maker. In the other half of the 20 money allocation decisions, Option 2 represents the altruistic option of increasing the match's payoff in N500 naira, at a cost to the decision-maker. Within each half, each possible decision varies the amount of money a person has to sacrifice to pick Option 2 (i.e., each decision presents a different price for Option 2). In the end, this series of decisions elicits the participant's willingness to pay to either increase or decrease in a fixed amount the payoff of their match.

However, it is not necessary for participants to face all 20 money allocation decisions. Using an algorithm that selects the next money allocation decision based on participants' prior choices, participants need to make only 7 or 8 decisions for the experimenter to calibrate their social preference parameters. Out of these, the payoffs of only one decision is implemented, picked at random. Full details on this design can be found in the Appendix.

To calibrate a person's social preference parameter, I use a her choices in the money allocations decisions in the following way. If a person picks Option 2 in a certain money allocation decision, she reveal that for her $u_i(Opt2) \ge u_i(Opt1)$. Assuming that her utility function has the form $u_i=x_i+\beta_i\cdot x_j$, then $u_i(Opt2) \ge u_i(Opt1)$ implies that $\beta_i \le (x_{i2} - x_{i1})/(x_{j1} - x_{j2})$ —where x_{i1} is the payoff for participant *i* if she picks Option 1. This way, each money allocation decision puts a bound on the social preference parameter, and with enough decisions of this sort one can calibrate and pin down a person's parameter. With this calibration method, I can use each participant's choices to place their social preference parameter in one of the following intervals: $\hat{\beta}_i \in \{(-1, -0.9), ..., (0.9, 1)\}$. I call these the calibrated estimates.

This calibration approach to recovering social preferences has the advantage of being simple and transparent. However, there are two potential concerns one could have with this approach. First, it ignores sampling variability, so I cannot calculate standard errors for the individual-level parameters I have calibrated. Second, it does not allow me to test with the data if more general models could better explain behavior. In Section 7, I present a structural estimation approach that addresses these concerns at the cost of being less direct.

⁴N500 naira represent twice the hourly wage in this context.

Eliciting beliefs about others' social preferences

After the money allocation decisions phase, the next module elicits beliefs on the probability of j not cooperating out of hate. That is, it elicits beliefs on the probability that j is hateful beyond the threshold, $\tilde{P}_i(\beta_j < T)$. To do this, I ask participants to guess the choices that other participants made in the money allocation decisions. If they guess correctly, participants earn money.

Notice, first, that beliefs on $P(\beta_j < T)$ are determined by the beliefs on the distribution of social preferences of the group j belongs to. In particular, $P(\beta_j < T)$ is the percentage of the distribution of social preferences of the group j belongs to that lies to the left of T. To elicit beliefs on $P(\beta_j < T)$, I do the following. First, I show participants a money allocation decision where picking Option 2 means having $\beta_j < T$. And I tell them, for example, that in this case the decision-maker was from the Green Group and the receiver was from the Blue Group. Then, I ask them to guess how many people (out of the 10) from the Green Group picked Option 2 when playing with someone from the Blue Group. This guess ultimately reveals what percentage of Muslims the participant thinks are hateful enough towards Christians to want to pick Option 2 in this money allocation decision—and, consequently, to want to not cooperate out of hate in an upcoming coordination game.

In addition to eliciting beliefs about the tail of the distribution of social preferences of the group j belongs to, I also elicit beliefs about the mean of this distribution, which I label as $\tilde{E}_i[\beta_j]$. To do this, I asked participants to face the same 20 money allocation decisions they faced before, but this time trying to guess what their match from the Green/Blue group picked. Because they do not know exactly who their match is but just their religion, this exercise elicits their beliefs on the average behavior of a person from that religion.

Measuring cooperation

Lastly, participants play coordination games with their anonymous matches from the Green and Blue groups. With each match, they play two coordination games, where each game has a variation in payoffs that changes the threshold of how hateful a person needs to be to want to not cooperate out of hate. For the first game the threshold is T=-0.2, and for the second one the threshold is T=-0.6. After these, the activities of the lab conclude. Full details on the experimental protocol can be found in the Appendix, where the reader can also find details of the coordination games and money allocation decisions, and screenshots of how these were presented to participants.

4. Setting: Jos, Nigeria

Nigeria is divided between a Muslim-dominated North and a Christian-dominated South. The Middle Belt is the region where these two religious communities intersect. Plateau State is one of the states located in the Middle Belt and stands out as the most ethnically diverse state in the country. The experiments of this project took place in Jos, the capital of Plateau State.

The city of Jos has historically had a balanced population of both Christians and Muslims, who have lived together for over a hundred years. Throughout much of Jos' history, the relation between these two groups was characterized by peaceful and harmonious interactions. For instance, just 25 years ago both religious groups lived on the same street and used to celebrate religious festivals together. However, with the onset of democratization in the 1990s, political leaders competing for power began to emphasize religious distinctions, leading to heightened tensions and a looming threat of violence. In 2001 occurred what came to be known as the First Crisis. This was a spontaneous outbreak of inter-religious violence perpetrated by ordinary citizens, that spread throughout the city. The crisis lasted for several days and resulted in over a thousand fatalities, with both groups being both victims and perpetrators.

After the First Crisis, tensions between the religious groups increased even more. This led to several similar spontaneous outbreaks of inter-religious violence in 2004, 2008 and 2011, each resulting in hundreds of fatalities. This sequence of crises deeply scarred the city and broke what was left of the once-harmonious relationship between Christians and Muslims. Since the First Crisis, and reinforced by the ones that followed, a process of religious segregation was set in motion, permeating all aspects of life, like the composition of residential areas, schools, jobs and political groups.

Notes: The figure shows a diagram for the map of Jos at three points in time. In each diagram, each cell represents one of Jos' communities (or neighborhoods) in its approximate geographical location. Green quadrants have a majority Muslim population, with darker greens representing a higher share of Muslims, and blue quadrants have a majority Christian population, with darker blues representing a higher share of Christians. Due to the absence of census data containing this information, the data for this figure was gathered using the following method: Within the group of participants of this project that were 40 or older and had lived in their community for at least 25 years, I picked 3 per community and asked them about the religious composition of the population in their neighborhood in these three years. For each neighborhood-year, I averaged the three answers and use that average as the data point.

Figure 1 showcases the religious segregation that took place in Jos between 2000 and 2022. The figure shows a diagram for the map of Jos at three key points in time: 2000, just before the First Crisis; 2010, just before the 2011 crisis; and 2022, when the baseline data of this study was collected. In each diagram, each cell represents one of Jos' communities (or neighborhoods) in its approximate geographical location. Green quadrants have a majority Muslim population, with darker greens representing a higher share of Muslims, and blue quadrants have a majority Christian population, with darker blues representing a higher share of Christians.

Today, due to the segregation that took place, there is minimal interaction between the religious groups in the city. Although the city has regained some stability and safety over the past decade, the traumatic experiences of the past have made people reluctant to venture outside the areas of their religious group. This lack of contact has exacerbated mistrust and animosity between the groups. Additionally, religion has become the key political cleavage, with political parties using religious banners to mobilize voters in the quest for control over the city. At the time of this writing, both sides fear that if the other religious group gains too much power, they may force them out of the city or block their growth in it. Many politicians exploit these fears for political gains, further exacerbating tensions. This context closely resembles the theoretical characterization of "the politics of fear", described by Padró i Miquel (2007).

Currently, power over the city is relatively balanced between the two religious groups, which may explain the fragile peace the city has experienced in recent years. Yet, this equilibrium is constantly under threat and is hard to predict if and when a new crisis may break out.

5. Data collection

The data collection for each lab-in-the-field experiment (baseline and endline) lasted for two weeks. The treatment, which was listening to the radio show (see Section 9), took place for six weeks, in between lab experiments. At baseline, the team in the field surveyed 997 people from 41 Jos communities (out of 44 communities). The sample was 50% Muslim and 50% Christian, 47% female and 53% male, with ages between 18 and 60 and a mean of 33. Participants were required to have access to a phone with WhatsApp and be available to participate in a second lab experiment two months later.

The recruiting process was the following. Every morning a pair of enumerators of the same religion visited a community of their religion. When in the community, enumerators picked a random starting point (like a school or water source) and started walking in opposite directions. To select a house to survey, they followed a 3/4 pattern, knocking on the 3rd house away from the starting point, then the 4th house from there, then the 3rd house from there, and so on. If someone answered the door, enumerators would briefly explain the survey and ask if someone in the household was interested in participating. If someone accepted, the lab-in-the-field experiment was carried out immediately at the person's home. Enumerators were instructed to maintain a balanced sample in age and gender. On

average, the lab experiment took around 50 minutes to complete.

At the end of the survey, enumerators asked participants if they wanted to participate in the radio show project. Because this implied no extra effort, everyone agreed to be contacted for this. Some days after the baseline was completed, we created two WhatsApp groups, one for the treatment group and another one for the control group. In them, we welcomed everyone to the radio show project and explained the logistics of it. Through the WhatsApp groups we sent the episodes of the radio drama. Only administrators could send messages in these WhatsApp groups.

After the radio show ended, enumerators visited the communities again. Using the registered phones, enumerators contacted the participants and scheduled appointments to carry out the endline lab experiment. 947 participants from baseline participated in the endline lab experiment—that is, 95% of the original sample.

For each survey, participants received a compensation between \$700 and \$1,700 naira, depending on the results of the different lab games. In Jos, \$1,000 naira was at the time approximately the payment for four hours of work. These payments were made in cash immediately after the survey ended. Importantly, the final payment did not reveal any information about the participant's or their match's decisions. This was because only some questions, picked at random, got their payoffs implemented, and which question got selected was not revealed.

6. Results of the Calibrated Estimates

The first result is that, in a game where mutual cooperation is an equilibrium and yields the maximum payoff to each player (which represents half a day of salary), people fail to cooperate in 31% of the interactions between groups⁵—compared to only 6% of interactions within groups. This leads to a loss of 9.6% of attainable payoffs in intergroup interactions. I also find considerable heterogeneity between neighborhood on the level of non-cooperation, which was expected as some particular neighborhoods have been the epicenter of the religious violence. For example, in the least cooperative neighborhood, 77% of participants decided to not cooperate.

6.1. Disentangling of hate and fear

Figures 2A and 2B display three main diagnostic facts drawn from the baseline lab-in-the-field experiment.

Figure 2A presents a histogram of the social preferences of the participants who decided to not

⁵This number is not the percentage of people that decided to not cooperate, but rather the expected percentage of interactions were cooperation would fail given the percentage of people that decided to not cooperate on each side. Failure to cooperate means that at least one of the two players decided to not cooperate. I find this statistic to be a better description of the problem, as the following example can illustrate: Imagine in one group everyone chooses *Not Cooperate* and in the other group everyone chooses *Cooperate*. In this case, the percentage of people that decided to not cooperate is 50%, which is misleading because 100% of the interactions between groups failed to cooperate.

Figure 2

B. Beliefs about the Outgroup, by Game Strategy

Notes: Figure 2A presents the social preferences (β_i) of non-cooperators, estimated following the approach described in Section 3. The red line represents the threshold point where a person becomes hateful enough to want to not cooperate out of hate. Figure 2B displays the beliefs about probability that an outgroup member has a level of hate beyond the threshold, $P(\beta_j < T)$, and therefore want to not cooperate out of hate. The blue line represents the actual probability of this event happening.

cooperate in the first coordination game of the experiment (the one with T=-0.2). The x-axis shows social preferences ranging from fully hateful, $\beta_i = -1$, to fully altruistic, $\beta_i = 1$. The dashed red line represents the threshold point at which a person becomes hateful enough to want to not cooperate out of hate. Figure 2A provides an initial disentangling of the motives of non-cooperation. The 30% of non-cooperators whose social preferences fall to the left of the dashed line had a hateful reason to not cooperate. On the other hand, the 70% of non-cooperators whose social preferences fall to the right of the dashed line did not have a hateful motive to not cooperate, so their decision must be driven by beliefs. It is also worth noting that the rightmost bar indicates that 52% of non-cooperators are, in fact, fully altruistic towards the outgroup.

Figure 2B displays a histogram of the beliefs about the outgroup, for cooperators and non-cooperators. Specifically, it shows beliefs on the likelihood that an outgroup member wants to not cooperate out of hate. That is, beliefs about the percentage of outgroup that has a level of hate beyond the threshold, $P(\beta_j < T)$. The dashed blue line shows the actual probability of this event happening, which is 6%. The graph shows that cooperators seem to have more or less accurate beliefs—on average, they believe that 14% of the outgroup is hateful beyond the threshold. On the other hand, non-cooperators show huge misperceptions about the outgroup—on average, they think 59% of the outgroup is hateful beyond the threshold. This means that non-cooperators exaggerate the number of hateful people in the outgroup by around 10 times. This fact is evidence of how unfounded fears play a central role in cooperation failure.

Figure 3: Preferences, Beliefs and Cooperation

Notes: This figure shows the relationship between preferences, beliefs and cooperation for the entire sample. The x-axis shows participants' social preferences towards the outgroup, β_i , and the y-axis shows participants' beliefs about the outgroup's social preferences towards the ingroup (more specifically, beliefs on the percentage of outgroup members that are not hateful beyond the threshold, $1-\tilde{P}_i(\beta_j < T)$). Each participant is represented by a dot. The dot is green if the participant cooperated and red if they did not. The dots overlap and are translucent. This creates varying opacities, with darker dots indicating a higher density of people at that preference-belief level. In addition, the greener a dot is, the more cooperation there is at that preference-belief level, and the redder it is, the more non-cooperation there is. The black line represents the fitted values. Social preference showcased here were estimated following the approach described in Section 3. The vertical dashed line represent the threshold, T=-0.2, at which an individual becomes hateful enough to want to not cooperate, the curved dashed line represent the threshold below which an individual is fearful enough to want to not cooperate out of fear (which depends on β_i , as described by equation (3)).

Figure 3 shows the relationship between preferences, beliefs and cooperation for the entire sample.

The x-axis shows participants' social preferences towards the outgroup, β_i , and the y-axis shows participants' beliefs about the outgroup's social preferences towards the ingroup (more specifically, beliefs on the percentage of outgroup members that are not hateful beyond the threshold, $1-\tilde{P}_i(\beta_j < T)$). Each participant is represented by a dot. The dot is green if the participant cooperated and red if they did not. The dots are translucent and can overlap. This creates different grades of opacity, with darker dots indicating a higher density of people at that preference-belief level. In addition, the greener a dot is, the more cooperation there is at that preference-belief level, and the redder it is, the more non-cooperation there is. (Brown dots are the result of translucent green and red dots overlapping.) The black line represents the fitted values. The vertical dashed line represent the threshold, T=-0.2, at which an individual becomes hateful enough to want to not cooperate out of hate. To the right of this line, when an individual does not have a hateful reason to not cooperate, the curved dashed line represent the threshold below which an individual is fearful enough to want to not cooperate out of fear (which depends on β_i , as described by equation (3)).

Figure 3 shows a few facts worth noticing. First, all participants who fall to the left of the hate threshold do not cooperate, as theory would predict. Second, when $\beta_i > T$, the rate of non-cooperation increases as the level of fear increases. Third, although on average there is a positive correlation between preferences and beliefs, this correlation is stronger on the hateful side than on the altruistic side: hateful individuals tend to also be very fearful, whereas altruistic individuals display a broader range of beliefs, from complete trust to extreme fear.

6.2. Heterogeneity by religion

Do the two religious groups under study act in a similar way? Or if there is heterogeneity in behavior, in which direction does it go? In terms of cooperation, the difference is stark. Out of all the people who decided to not cooperate with the outgroup, 84% were Christians, while only 16% were Muslims. Figure 4 reports heterogeneity in social preferences and beliefs.

Figure 4A reports the following averages, from left to right: social preferences for the ingroup $(\beta_i|j\in I)$, social preferences for the outgroup $(\beta_i|j\in O)$, beliefs on the mean social preferences ingroup members have for the ingroup $(\tilde{E}_i[\beta_j|j\in I])$, beliefs on the mean social preferences outgroup members have for the ingroup $(\tilde{E}_i[\beta_j|j\in O])$ —this for Christians and Muslims. When comparing the blue and the red bars, the figure shows that both Christians and Muslims have more positive social preferences for the ingroup than the outgroup. However, the gap between average social preferences for the ingroup vs. the outgroup is much greater in Christians than in Muslims. In addition, comparing both red bars shows how Christians have worse social preferences toward Muslims than Muslims toward Christians. In terms of beliefs about the ingroup, comparing the green and the blue bars shows that both groups have close to accurate (although a little pessimistic) beliefs on how ingroup members treat other ingroup members. Finally, regarding the beliefs about the outgroup, comparing the outgroup, comparing the yellow bar of one group with the red

Figure 4: Heterogeneity by Religion A. Preferences and Beliefs about the Mean

Notes: In both figures, $j \in I$ means that j belongs to the ingroup, and $j \in O$ means that he belongs to the outgroup. Figure 4A reports the following averages, from left to right: social preferences for the ingroup $(\beta_i|j\in I)$, social preferences for the outgroup $(\beta_i|j\in O)$, beliefs on the mean social preferences ingroup members have for the ingroup $(\tilde{E}_i[\beta_j|j\in I])$, beliefs on the mean social preferences outgroup members have for the ingroup $(\tilde{E}_i[\beta_j|j\in I])$, beliefs about the tail of the distribution of social preferences, for Christians and Muslims. $\tilde{P}_i(\beta_j < T|j\in I)$ is the beliefs on the percentage of ingroup members that are hateful beyond the threshold. $\tilde{P}_i(\beta_j < T|j\in O)$ is the beliefs on the percentage of outgroup members that are hateful beyond the threshold. The diamonds represent the actual percentage of people that are hateful beyond the threshold for each case. In both figures, the black lines represent standard errors.

bar of the other group reveals an important difference between religious groups: Christians have very inaccurate and pessimistic beliefs about Muslims' social preferences towards them. Instead, if anything, Muslims have somewhat optimistic beliefs about Christians' social preferences towards them.

Figure 4B presents more evidence of the heterogeneity in misperceptions between groups by looking

at beliefs about the tail of the distribution of social preferences—that is, beliefs about the percentage of people that are hateful beyond the threshold, $\tilde{P}_i(\beta_j < T)$. Green bars report beliefs about the ingroup and orange bars beliefs about the outgroup. The first thing to note is that both groups exaggerate the percentage of hateful people there is in both the ingroup and the outgroup. In terms of perceptions about the ingroup, the bias is very similar between the groups—both group believe that around 10% of the ingroup is hateful towards other ingroup members, while in reality it is only 1%. However, regarding perceptions about the outgroup, the bias differs considerably. Christians believe that 26% of Muslims are hateful beyond the threshold, while Muslims believe 16% of Christians are. In addition, because there are fewer hateful Muslims than hateful Christians, Christians exaggerate the amount of hateful people in the outgroup by 24 percentage points, while Muslims exaggerate this amount by 7 percentage points.

In sum, in this context, Christians are less cooperative than Muslims, have worse social preferences towards Muslims and have more biased beliefs about Muslims than the other way around. Importantly, in the pre-analysis plan I pre-registered that heterogeneity in these three outcomes would go in this direction, based on the focus groups done in the exploratory phase of this project. The main reason why this is the case is probably the salience of Boko Haram, the major armed group in the country, which distorts the beliefs of only one group and generates negative feelings towards only one group. However, it is important to recall that religious violence in this area has come from both sides. Another feature of this context that probably helps drive the heterogeneity in behavior is the location of Jos. Although the city has a very similar number of Christians and Muslims, most of the nearby cities outside of Plateau State are part of the Muslim north. This creates the feeling in some Christians in Jos that they are surrounded by Muslim communities and that therefore their presence in the area is threatened. Importantly, Christians and Muslims have very similar levels of income in this setting, so this is unlikely to be driving the different willingness to pay.

6.3. Validation of hate and fear measures with attitudes on policies of segregation

The following is a validation exercise that aims to provide evidence that my measures of hate and fear capture real-life motivators of hostile behavior. To do this, I test whether my measures of hate and fear correlate with support for a specific hostile action against the outgroup—religious segregation—highly relevant in the context of Jos. Furthermore, as a hostile action, segregation can be supported by citizens because of hate or fear, and I use this to see if my measures not only predict *if* people support hostile behavior but also *why*. This was done in the following way.

In a survey module, I asked participants about real integration policies that were being discussed by the city and state governments at the time. Specifically, I inquired about a policy promoting integration in settlements and another promoting integration in schools. For each policy, my approach to elicit attitudes was structured as follows. I first introduced the policy to the participants and stated that "the policy may have some possible downsides." I then presented two potential downsides and asked participants to express the extent to which they agreed that each downside was indeed associated with the policy. Importantly, one downside was meant to capture a hateful reason against the policy, while the other was meant to capture a fearful reason against the policy. Participants expressed their level of agreement on a 1 to 4 scale (1=completely disagree, 2=somewhat disagree, 3=somewhat agree, 4=completely agree). The policies and associated downside in this survey module are detailed in the table below.

Policy	Hateful reason against	Fearful reason against		
New settlements in Jos should	Christians and Muslims have	Some families would not be		
mix Christians and Muslims	different ways of living that	able to trust their neighbors in		
	simply cannot coexist together	these mixed settlements		
Schools in Jos should have a	Muslims and Christians have	The safety of our children		
mix of Christian and Muslim	different ways of educating	would be at risk in these mixed		
children and teachers	their children that simply	schools		
	cannot be integrated			

Table 1: Attitudes on Segregation Policies

Do you d	agree the follo	wing is a dou	vnside of integ	gration in	
	Settle	ments	Schools		
	Hateful reason (1)	Fearful reason (2)	Hateful reason (3)	Fearful reason (4)	
Hate $(-\beta_i)$	0.488*** (0.085)	0.185** (0.079)	0.216** (0.103)	0.164* (0.091)	
Fear ($\tilde{P}_i(\beta_j < T)$)	0.942*** (0.168)	1.458*** (0.144)	0.672*** (0.171)	1.003*** (0.143)	
Controls	Y	Y	Y	Y	
Mean Dep.Var.	1.957	2.397	1.929	1.642	
Observations	997	995	996	995	

Notes: This table reports the result of regressions where the dependent variable is the level of agreement with a reason against an integration policy, and the independent variables are the lab measures of hate and fear. The outcome variable is a variable from 1 to 4 that expresses how much a person agrees that the stated potential downside of a policy is in fact associated with that policy. Columns 1 and 2 are about downsides regarding a policy for integration in settlements, while the ones in Columns 3 and 4 are about downsides regarding integration in schools. Columns 1 and 3 are about hateful reasons to oppose the policy, while 2 and 4 are about fearful reasons to oppose the policy. The variable *Hate* is the negative of the social preferences, $-\beta_i$, and the variable *Fear* is the beliefs on the proportion of the outgroup that is hateful beyond the threshold, $\tilde{P}_i(\beta_j < T)$. Controls are religion, sex and age. *Mean Dep.Var.* is the mean of the dependent variable for the whole sample at baseline. Standard errors are clustered at the individual level.

Table 1 reports the results of regressions where the dependent variable is the level of agreement with a reason against an integration policy, and the independent variables are the lab measures of hate and fear. The first thing to note is that the lab measures of hate and fear show a positive and statistically significant correlation with attitudes against religious integration. This provides suggestive evidence that my measures capture support for hostile behavior beyond the lab setting. The second thing to note is the strength of the correlation between my hate and fear measures and the reasons for opposing integration. Specifically, my measure of hate shows a stronger correlation with reasons rooted in hatred, whereas my measure of fear shows a stronger correlation with reasons rooted in fear. To see this, notice that the coefficient of *Hate* is notably greater in column (1) vs. column (2), and in column (3) vs column (4). On the other hand, the coefficients of *Fear* show the opposite pattern: the coefficient of Fear is notably greater in column (4) vs. column (3). These results suggest that the lab measures used in this paper do not merely capture generic negative feelings but rather appear to effectively capture the specific feelings they were designed to measure.

7. Structural Model

Section 3 presented a calibration approach to recovering social preferences that has the advantage of being simple and transparent. However, the directness of that approach comes at a cost, as the calibration exercise also presents two drawbacks. First, individual-level parameters are being calibrated using 7 or 8 decisions per person. This procedure ignores sampling variability and the asymptotics of estimation, and therefore does not allow to compute standard errors of the recovered parameters. Second, the calibration approach does not allow me to test alternative models that could potentially better explain behavior. One could, instead, want to consider more general models that include additional parameters (like loss aversion or psychological costs) and let the data drive the model selection process. This section presents a structural estimation approach that overcomes these drawbacks and still allows to recover parameters at the individual level to determine the extent to which non-cooperation is driven by hate vs. fear.

In what follows, I introduce an empirical model with random coefficients to recover $\beta_i \forall i$. In short, this procedure (i) uses everyone's full set of decisions to estimate the distribution (mean and variance) from which all β_i 's are drawn; (ii) for each person, it uses her decisions to get a conditional distribution from which the β_i of people with her set of decisions are drawn; (iii) uses the mean of that conditional distribution as an estimator of her β_i .

7.1. A general expected utility function

The more general expected utility function I use in this section is the following:

$$W(s_i) = \tilde{P}_i(s_j = N) \left[u(s_i, s_j = N) + \psi_i \cdot \mathbb{1}(s_i = C) \right] + \tilde{P}_i(s_j = C) \left[u(s_i, s_j = C) + \gamma_i \cdot \mathbb{1}(s_i = N) \right]$$

Compared to the expected utility function presented in Section 2 (equation (2)), this general utility function includes two payoff shifters, ψ_i and γ_i , to add full flexibility to the utility a player might get from

each scenario of the game⁶. The following table shows the utility player i would get in each scenario of the game with this general utility function.

	С	N		
С	$1000 + \beta_i \cdot 1000$	$500 + \beta_i \cdot 900 + \psi_i$		
N	$900 + \beta_i \cdot 500 + \gamma_i$	$750 + \beta_i \cdot 750$		

These payoff shifters can capture different psychological costs and benefits that a player might receive, beyond the monetary payoffs of the game.

In particular, a $\psi_i < 0$ could capture the psychological cost of getting what is usually described as the "sucker's payoff" (the payoff *i* gets when she cooperates and *j* does not). Ultimately, a negative ψ_i raises the cost of cooperating when the other player does not, and therefore lowers the level of fear needed to prefer to not cooperate. On the other hand, a $\gamma_i > 0$ could capture a psychological benefit of giving the "sucker's payoff" to the other player. Ultimately, a positive γ_i raises the benefit of not cooperating when the other player lowers the level of hate needed to want to not cooperate.

In addition, a negative ψ_i and/or a negative γ_i could capture loss aversion, where the reference point is the payoff the player would have received if she had chosen the other strategy.⁷

Of course, if ψ_i and γ_i should be included in the model—and if so, their sign and magnitude—will be determined empirically by estimating the model.

7.2. Empirical model (with random coefficients) and estimation procedure

In the experiment, participants are matched with an unspecified $j \in O$. First, they make M_i money allocation decisions, where M_i can be 7 or 8 depending on the participant's decisions. Then, their beliefs on the money allocation decisions j made are elicited to get $\tilde{P}_i(\beta_j < T)$. And then they play Gcoordination games, with G=2.

In each money allocation decision m, participant i makes decision d_{im} between two options with sure payoffs for herself and her match j. Participant i's utility from picking $d_{im} \in \{Opt1, Opt2\}$ is her base utility function (as defined by equation (1)), plus an idiosyncratic error, $\varepsilon_{d_{im}}$, that has an extreme value distribution with mean zero. This error can be thought of as the result of limited attention in the experiment. The utility function is:

$$u(d_{im}) = x_i(d_{im}) + \beta_i \cdot x_j(d_{im}) + \varepsilon_{d_{im}}$$

Where $x_i(d_{im})$ is the payoff *i* gets when she chooses d_{im} in money allocation decision *m*.

⁶Adding payoff shifters to the (C, C) and/or (N, N) scenario would be redundant, it would not add more flexibility to the model. This can be seen in Appendix A2.

⁷A potential model with risk aversion is discussed in Appendix B1. In the end, I discard it for multiple reasons. First, theoretically, at this level of prices individuals should not exhibit risk aversion. Second, empirically, this is what I find in the field. Using a canonical survey module to measure risk aversion, I find that over 90% of individuals are risk-neutral at this level of prices. Third, the behavioral literature suggests that at low prices, behavior is better explained by loss aversion than risk aversion (Rabin, 2000; DellaVigna, 2018).

The data consists of is d_{im} and the payoffs for i and j in each option of each money allocation decision. The unknown parameter is β_i . Because ε_{id} is distributed extreme value, the probability of participant i's sequence of choices $d_i = \langle d_{i1}, ..., d_{iM_i} \rangle$ is:

$$\Lambda_{im} = \frac{\exp\left(u_{im}(Opt2) - u_{im}(Opt1)\right)}{1 + \exp\left(u_{im}(Opt2) - u_{im}(Opt1)\right)}$$
$$P(d_i|\beta_i) = \prod_{m=1}^{M_i} \Lambda_{im}^{\mathbb{1}(d_{im}=Opt2)} \left(1 - \Lambda_{im}\right)^{\mathbb{1}(d_{im}=Opt1)}$$

Participants also play G coordination games. In each game g, participant i picks strategy $s_{ig} \in \{C, N\}$. Participant i has risk-neutral preferences and her expected utility function includes an error, $\varepsilon_{s_{ig}}$, that has an extreme value distribution with mean zero, and that is independent from $\varepsilon_{d_{im}}$. The expected utility function is:

$$W(s_{ig}) = \tilde{P}_{i}(s_{jg}=N) \left[u(s_{ig}, s_{jg}=N) + \psi_{i} \cdot \mathbb{1}(s_{ig}=C) \right] + \tilde{P}_{i}(s_{jg}=C) \left[u(s_{ig}, s_{jg}=C) + \gamma_{i} \cdot \mathbb{1}(s_{ig}=N) \right] + \varepsilon_{s_{ig}}$$
$$u(s_{ig}, s_{jg}) = x_{i}(s_{ig}, s_{jg}) + \beta_{i} \cdot x_{j}(s_{ig}, s_{jg})$$

Where $\tilde{P}_i(s_{jg}=s)$ is *i*'s subjective beliefs on $P(s_{jg}=s)$, given that $j\in O$. Recall that $\tilde{P}_i(s_{jg}=N) = \tilde{P}_i(\beta_{jg} < T_g)$ (see Section 2), and that $\tilde{P}_i(\beta_j < T_g)$ is elicited directly in the experiment (see Section 3 for details). $x_i(s_{ig}, s_{jg})$ is the payoff *i* gets when she chooses s_i and *j* chooses s_j in game *g*. ψ_i and β_i are payoff shifters that can capture different psychological costs or benefits.

The data consists of s_{ig} , $P_i(s_{jg}=N)$, and the payoffs for i and j in all four scenarios of each game. The unknown parameters are β_i , ψ_i and γ_i . Because $\varepsilon_{s_{ig}}$ is distributed extreme value, the probability of participant i's sequence of choices $s_i = \langle s_{i1}, s_{i2} \rangle$ is:

$$\Lambda_{ig} = \frac{\exp\left(W_{ig}(N) - W_{ig}(C)\right)}{1 + \exp\left(W_{ig}(N) - W_{ig}(C)\right)}$$
$$P(s_i|\beta_i, \psi_i, \gamma_i) = \prod_{g=1}^G \Lambda_{ig}^{\mathbb{1}(s_{ig}=N)} (1 - \Lambda_{ig})^{\mathbb{1}(s_{ig}=C)}$$

Combining both probabilities, I can define the probability of *i*'s sequence of choices in all the lab activities, $y_i = \langle d_{i1}, ..., d_{iM_i}, s_{i1}, s_{i2} \rangle$:

$$P(y_i|\beta_i, \psi_i, \gamma_i) = P(d_i|\beta_i) \times P(s_i|\beta_i, \psi_i, \gamma_i)$$

Let $\theta_i \equiv (\beta_i, \psi_i, \gamma_i)$, a vector of our parameters of interest. The individual-level parameter θ_i is unknown, but I assume that $\theta_i \sim \mathcal{N}(\mu, \Sigma)$ and has a probability density function $f(\cdot)$. So the probability

of *i*'s sequence of choices y_i is:

$$P(y_i|\mu, \Sigma) = \int P(y_i|\theta_i) \cdot f(\theta_i|\mu, \Sigma) \ d\theta$$

A mixed logit likelihood function represents the probability of observing all the decisions of all individuals:

$$L = \prod_{i=1}^{N} P(y_i | \mu, \Sigma)$$

Because the integrals in the likelihood function are hard to calculate, they are approximated through numerical simulations. The parameters μ and Σ are estimated through simulated maximum likelihood, following Train (2009).

After estimating μ and Σ , I can use them to subsequently estimate $\theta_i \forall i$ in the following way. Using Bayes rule, I can derive a distribution of θ_i conditional on *i*'s sequence of choices y_i :

$$g(\theta_i|y_i, \mu, \Sigma) = \frac{P(y_i|\theta_i) \cdot f(\theta_i|\mu, \Sigma)}{P(y_i|\mu, \Sigma)}$$

This conditional distribution represents a shift of the unconditional distribution, and it is a distribution from which the β_i of someone with the set of decisions y_i is more likely to be drawn. Using $g(\cdot)$, I can calculate the mean of the distribution conditional on the choice sequence y_i , and use it as an estimator of θ_i :

$$\bar{\theta}_i = \int \theta_i \cdot g(\theta_i | y_i, \mu, \Sigma)$$

This integral is also approximated through simulations, following Train (2009).

It is worth noticing that this estimation procedure manages to use all the information in one single stage while keeping the essence of the identification strategy of the experimental design, which is to estimate social preferences based on the money allocation decisions, and separately from the coordination games. In this estimation, 80% of the observations used to estimate μ_{β} come from the money allocation decisions. Intuitively, what the estimation will tend to do is to pick a μ_{β} to fit the money allocation decisions, and pick a μ_{ψ} and μ_{γ} to fit the coordination game decisions that remain unexplained, given the elicited individual beliefs, $\tilde{P}_i(s_{jg}=N)$.

7.3. Result of the model selection process

Appendix B1 reports the model selection process, where I test from the most to the least general model to identify the right level of generality that best describes behavior. In Appendix B1 I also discuss the role of risk aversion. As it turns out, the model selection process concludes that γ_i is not a parameter needed to better describe the data, while ψ_i is (with a $\psi_i < 0$). In that sense, the model that best describes

behavior is the one with the following expected utility function:

$$W(s_i) = \tilde{P}_i(s_j = N) \left[u(s_i, s_j = N) + \psi_i \cdot \mathbb{1}(s_i = C) \right] + \tilde{P}_i(s_j = C) \cdot u(s_i, s_j = C) + \varepsilon_{s_i}$$

This implies that psychological costs/benefits do not seem to change the level of hate needed to want to not cooperate out of hate, but they do reduce the level of fear needed to want to do so. In other words, when accounting for psychological costs/benefits, the threshold at which a person becomes hateful enough to want to not cooperate remains at T=-0.2, while the level of fear needed for a person to want to not cooperate (described by equation (3)) now becomes:

$$\tilde{P}_{i}(s_{j}=N) \geq \frac{100 + \beta_{i} \cdot 500}{350 + \beta_{i} \cdot 350 - \psi_{i}}$$

The estimated parameters of the model can be found in the following section.

8. Results of the Structural Estimates and Counterfactual Analysis

8.1. Structural estimates and decomposition of motives for non-cooperation

Table 2 reports the results of the simulated maximum likelihood estimation of the random coefficients model presented in Section 7. The parameters of interest are β_i , the social preferences for the outgroup, and ψ_i , a psychological cost of cooperating when the other player does not, both for all *i*. I estimate the mean and variance of the distribution from which these parameters are drawn.

	Coefficient	Stand. Err.		
μ_{eta}	0.922	0.072	***	
σ_{eta}	0.420	0.059	***	
μ_{ψ}	-532.7	108.6	***	
$\mu_\psi \ \sigma_\psi$	469.2	163.7	***	
Observations			9,006	
Clusters		997		
Likelihood		-3,267		

Table 2: Random Coefficients Estimation

Notes: This table reports the results of the simulated maximum likelihood estimation of the random coefficients model presented in Section 7. Each observation is one decision of one participant in either a money allocation decision or a coordination game. μ_{β} and σ_{β} are the mean and variance of the distribution of the parameter of social preferences, β_i . μ_{ψ} and σ_{ψ} are the mean and variance of the distribution of the parameter are clustered at the individual level.

The first thing to note is that all parameters are precisely estimated—all four parameters in Table 2 are significant at the 1% level. The estimated μ_{β} shows that, on average, people are highly altruistic towards the outgroup. In addition, σ_{β} indicates the level of dispersion of social preferences around the mean. The estimated μ_{ψ} shows that there is indeed a psychological cost of getting the "sucker payoff"

that matters in the decision and is of considerable size, being half the amount of the maximum payoff in the game. Nevertheless, the size of σ_{ψ} highlights how this psychological penalty varies considerably in the population.

The fact that $\psi_i < 0$ warrants some discussion. The reason why this is the case is that the level of fear needed to want to not cooperate appears to be lower than the one described by equation (3), when the utility function only considers monetary costs. To see this, consider the case of fully altruistic noncooperators (who are half of all non-cooperators). If $\psi_i=0$ and the only potential costs of cooperating are monetary, a fully altruistic person would want to not cooperate only if she believes that at least 86% of the outgroup will not cooperate ($\tilde{P}_i(s_j=N)>0.86$). However, fully altruistic non-cooperators believe, on average, that 60% of the outgroup will not cooperate ($\tilde{P}_i(s_j=N)=0.6$). This suggests that the fear threshold for non-cooperation is lower than the one described by equation (3), and that, therefore, the potential costs of cooperating go beyond the monetary one. Consequently, a model that includes psychological costs through the ψ parameter will describe better the data.⁸

Using the estimated distributions, I estimate individual-level parameters to assign a β_i and ψ_i to each participant, following the procedure explained in Section 7. I use these parameters and the elicited beliefs in the analysis that follows. The first important thing to note is that the model performs well in terms of sample fit: using the structurally estimated individual-level parameters and the elicited beliefs, I correctly predict 94% of the decisions in the coordination game. This indicates that the core drivers of non-cooperation are captured by my model and measurements.

The quantitative decomposition of motives for non-cooperation is done as follows. To determine to what extent non-cooperation is driven by hate vs. fear, I shut down the fear motive in participants' expected utility and observe how many non-cooperators would still prefer to not cooperate in this scenario. By doing this I determine what percentage of people do not cooperate purely out of hate and what percentage require fear to decide to not cooperate. More specifically, to shut down the fear channel I set to zero participants' beliefs on the probability that j will not cooperate—that is, I set $\tilde{P}_i(s_j=N)=0$ for all i. Doing so reduces i's expected utility to i's utility when j cooperates, $W(s_i)=u(s_i, C)$. Because I have estimated β_i for all i, I can calculate $u(s_i, C)$ and determine for each i if u(N, C)>u(C, C). As shown before, u(N, C)>u(C, C) means that $\beta_i < T$, which allows me to conclude that i chooses to not cooperate out of hate (and regardless of beliefs). I can also conclude that non-cooperators for whom u(N, C)<u(C, C) required fear to want to not cooperate.

I find that 24% of the people who do not cooperate do so out of hate, while 76% do so out of fear.⁹ Comparing these numbers to those found using the calibration approach from Section 6 (30% hate, 70%

⁸Alternatively, this gap could imply that higher-order beliefs are formed and play a role in the cooperation decision. In Appendix B2 I show that this is unlikely to be the case, as preferences and first order beliefs explain almost all the variation in the cooperation decisions. This would also fall out of line with the findings of the experimental literature which state that subjects rarely form higher-order beliefs in these type of games (Rubinstein, 1989; Kneeland, 2015).

⁹In Appendix C1 I show this result is robust to controlling for social desirability bias in my measure of hate, following Dhar et al. (2022).

fear) provides a good cross validation exercise. It is reassuring to find that the proportions of people not cooperating out of hate and fear estimated by these two approaches are fairly similar¹⁰. Notice it was not clear *a priori* this was going to be the case, as one approach calibrates individual-level parameters out of 8 money allocation decisions, while the other uses everyone's full set of decisions to estimate the distribution of parameters, and then uses an individual's decisions to determine where in the estimated distribution the individual's parameter is likely to be. The fact that the resulting decompositions from both approaches are so similar suggests that the results are not the artifact of a particular specification or estimation method.

8.2. Counterfactual analysis

I now turn to the counterfactual analysis to study how hypothetical policy interventions that shift the drivers of conflict would affect cooperation. First, I investigate how would cooperation change if a policy solved unwarranted fears by correcting misperceptions about the outgroup. In other words, I investigate how would cooperation change if people had accurate beliefs about the percentage of people in the outgroup that is hateful. To do this, I replace everyone's subjective beliefs on the probability that an outgroup member does not cooperate out of hate with the empirical probability of this event happening—that is, I replace $\tilde{P}_i(\beta_j < T)$ with $P(\beta_j < T)$ for all *i*. Notice that I can calculate $P(\beta_j < T)$ because I have estimated the social preferences of all individuals in each groups. Then, I calculate the expected utilities with the newly imputed beliefs and observe in this scenario how many people prefer to not cooperate, W(N) > W(C). I find that if a policy solved unwarranted fears by correcting inaccurate beliefs about the outgroup, the number of people not cooperating would drop by 72%. This means that 94% of the people who do not cooperate out of fear do so due to misperceptions (recall that 76% of people do not cooperate out of fear, so 72%/76%=94%). This result underlines how misperceptions leading to unwarranted fears are the single most important barrier to intergroup cooperation.

However, expecting a policy to completely eliminate misperceptions may be unrealistic. In an additional exercise, I analyze a potentially more realistic policy—one that reduces each individual's misperceptions by half. More specifically, I replace $\tilde{P}_i(\beta_j < T)$ with $min\left\{\frac{\tilde{P}_i(\beta_j < T)}{2}, P(\beta_j < T)\right\}$. I find that such an intervention would decrease the number of people not cooperating by 52%. This means that the number of people not cooperating out of fear would drop by 68% (52%/76% = 68%). This shows that even if a policy does not fully correct misperceptions, it can still be highly effective at increasing cooperation.

I then investigate how would cooperation change if a policy were to reduce hate. I first simulate a policy that completely eradicates intergroup hate, such that nobody wants to not cooperate out of hate. To do this, I replace the social preferences of all hateful people (those with $\beta_i < 0$) with selfish social preferences ($\beta_i=0$). Then, I calculate the expected utilities with the newly imputed preferences and

¹⁰I also find that the correlation between the β_i from both approaches is 0.84. For a scatter plot, see Figure B3.1.

observe in this scenario how many people prefer to not cooperate, i.e., for how many W(N) > W(C). I find that if a policy completely eradicated intergroup hate, the number of people not cooperating *would not decrease*. The reason why this is the case is because hateful individuals tend to also be very fearful, so even without hate, all of them would still want to not cooperate out of fear.

In light of this, I simulate a policy with more extreme (and unrealistic) effects on social preferences. I study what would be the effect of a policy that could turn all people not cooperating out of hate into fully altruistic individuals. To see this, I replace the social preferences of those with $\beta_i < T$ for $\beta_i = 1$. I find that in this case the number of people not cooperating would fall by 4.5%. This means that if the people not cooperating out of hate became fully altruistic, only 19% of them would switch to cooperation (recall that 24% of people do not cooperate out of hate, so 4.5%/24% = 19%)—while 81% of them would still want to not cooperate, now out of fear. This result highlights how tackling hate is an inefficient way of increasing cooperation.

Considering all these counterfactual scenarios together, the main policy recommendation that can be drawn is that policies that reduce fear would be significantly more effective at increasing cooperation than policies that reduce hate. This is not only because policies to reduce hate affect a smaller percentage of non-cooperators (24% vs 76%), but also because they manage to switch to cooperation a smaller percentage of the population they target (19% vs 94%).

8.3. Using the endline data to test the counterfactual analysis predictions

As explained in the introduction and data collection section, the subjects of this project participated in two identical lab-in-the-field experiments that took place two months apart, and in between these they received an intervention (see Section 9). Between the baseline and endline lab experiments, the level of hate, fear and cooperation of each participant could have changed for multiple reasons: because of the intervention, but also because of individual experiences or events at the city or country level that happened during this period. In this section, I use the endline lab experiment data to test the lessons from the counterfactual analysis by studying how real-life changes in hate and fear between lab experiments translated into changes in cooperation.

I test for the following three lessons. First, to increase cooperation, decreasing fear should be more important than decreasing hate. Second, if only hate decreased, the effects on cooperation should most likely null. Third, if only fear decreased, the effects on cooperation should still be considerable. To test these, I run the regression below.

$$\Delta Cooperate_i = \phi_0 + \phi_1 \Delta Hate_i^{std} + \phi_2 \Delta Fear_i^{std} + \varepsilon_i$$

Here, $\Delta Cooperate_i$ is an indicator variable equal to 1 if *i* switched to cooperate by endline, 0 if there was no change, and -1 if *i* switched to not cooperate. $\Delta Hate_i^{std}$ is a standardized variable (mean 0, s.d. 1) of the change in negative social preferences *i* had between the baseline and endline lab experiments

(that is, the change in $-\beta_i$). $\Delta Fear_i^{std}$ is a standardized variable (mean 0, s.d. 1) of the change between lab experiments *i* had in her beliefs on the probability that the *j* will not cooperate out of hate (that is, the change in $\tilde{P}_i(\beta_j < T)$). Importantly, because the two regressors are standardized, their coefficients can be compared to determine their relative importance. Note, however, that no exogenous variation is being considered here, so the results are just correlational. Table 3 reports the results.

	Δ Cooperation			
	(1)	(2)	(3)	
Δ Hate	-0.105***	0.004		
	(0.013)	(0.003)		
Δ Fear	-0.191***		-0.184***	
	(0.013)		(0.016)	
Oraly if Allata-0	Ν	Ν	Y	
Only if Δ Hate=0	11	1.	-	
Only if Δ Fear=0	Ν	Y	Ν	
Mean Dep.Var.	.113	.113	.113	
Observations	947	316	787	

Table 3: Testing Lessons from the Counterfactual Analysis

Notes: This table reports correlational effects of the change in preferences and beliefs between the baseline and the endline lab experiments on the change in cooperation. $\Delta Cooperate$ is an indicator variable equal to 1 if *i* switched to cooperate by endline, 0 if there was no change, and -1 if *i* switched to not cooperate. $\Delta Hate_i^{std}$ is a standardized variable (mean 0, s.d. 1) of the change in negative social preferences *i* had between the baseline and endline lab experiments (that is, the change in $-\beta_i$). $\Delta Fear_i^{std}$ is a standardized variable (mean 0, s.d. 1) of the change in negative social preferences *i* had between the baseline and endline lab experiments (that is, the change in $-\beta_i$). $\Delta Fear_i^{std}$ is a standardized variable (mean 0, s.d. 1) of the change between lab experiments *i* had in her beliefs on the probability that the *j* will not cooperate out of hate (that is, the change in $\tilde{P}_i(\beta_j < T)$). Column 1 includes all subjects. Column 2 restricts the sample to only subjects who showed no change in fear between lab experiments. Mean Dep.Var. is the mean of the dependent variable for the whole sample at baseline. Standard errors are clustered at the individual level.

Column 1 reports that changes in both hate and fear mattered in the decision to switch to cooperation by endline. Crucially, and in line with the lessons from the counterfactual analysis, the coefficients also highlight how changes in fear were twice as important as changes in hate for people to switch to cooperation. A decrease in hate by one standard deviation increases the probability of switching to cooperation by around 10 percentage points, while a decrease in fear by one standard deviation increases the probability of switching to cooperation by around 20 percentage points.

I then look at the cases where only hate changed or where only fear changed. Column 2 reports a regression where I restrict the sample to subjects for whom only hate changed between lab experiments. The small and insignificant coefficient shows that when only hate decreased but not fear, cooperation did not seem to increase. Together with Column 1, these results suggest that reductions in hate can increase cooperation only if accompanied by reductions in fear. On the other hand, Column 3 reports a regression where I restricted the sample to subjects for whom only fear changed. The coefficient shows that when only fear decreased but not hate, cooperation did increase. Furthermore, the coefficient in Column 3 is very similar in magnitude to the one found in Column 1. These results are, again, in line with the lessons from the counterfactual analysis: decreasing only hate is an inefficient way of increasing

cooperation, while tackling only fear is an effective way of doing so.

9. Real-Life Policy Analysis: RCT on a Cultural Media Intervention

After understanding how hate and fear drive conflict, I now connect this diagnosis to real-life policy and study why policies currently trusted to reduce conflict in this setting may or may not be effective at doing so. I focus one type of intervention, which is cultural media interventions, in particular radio drama series. I do an RCT on this intervention and evaluate it in the context of the model: I use the experimental protocol again to measure how the intervention changed the levels of hate, fear and cooperation.

9.1. Radio dramas as a policy tool in Africa

In Nigeria, NGOs are constantly creating new radio dramas to promote messages on different social issues. For example, the main production company in the Jos region creates around 4 radio dramas per year, and recently created shows on topics such as women empowerment and Covid-19. Moreover, radio dramas have been used to promote messages on conflict-related issues. For instance, radio dramas have tackled topics such as how fake news fuel conflict and the reintegration of former Boko-Haram members into society.

In Nigeria, policymakers see radio dramas as a highly valuable strategy for addressing conflict, citing three primary reasons (which happen to have scientific support). First, fictional stories make it easier to discuss sensitive topics (Slater and Rouner, 2002). Delving into historical and contemporary conflict tends to evoke strong emotions and opinions in the listeners, which can make them less receptive to the intended message. A fictional story overcomes this challenge. Second, dramatized narratives help to increase attention and retention of the intended message (Kromka and Goodboy, 2019). In an environment saturated with numerous NGOs constantly employing different campaigns to promote cooperation, most initiatives struggle to capture people's attention. Instead, radio dramas are a type of intervention that is inexpensive to produce and require minor logistics to implement, relative to other popular interventions to mitigate conflict. This versatility allows them to be implemented in a wide range of contexts.

These three reasons help explain why radio dramas have become a popular policy tool in Africa and make them an interesting policy to study. In addition, research in social psychology on whether radio dramas can improve relationships between groups after conflict has found mixed results (Paluck, 2009), indicating the need for further investigation.

9.2. A new radio drama: The Convergence

I partnered with Podbeta, a radio drama production company from Nigeria, to create a *new* radio drama. This company has been hired to create the radio shows of some of the most important NGOs in Nigeria, including Search for Common Ground and UN Women. Creating a new radio show has important advantages. First, it ensures that the participants of the experiment have not previously heard the treatment radio show. Using an existing radio show would pose a problem because these are widely broadcasted, which means that the subjects of the experiment could have already been treated. Alternatively, one could use a radio show that was broadcasted in an area that does not cover Jos. However, importing a radio drama would not have the same effect since the messages of this type of radio dramas are tailored to the specific situation of the place in which they are broadcasted. Moreover, creating a new radio show allowed me to have a story that directly addressed the motives I explore in this paper—that is, a story that spoke about hate and fear between communities in conflict.

A possible concern about creating a new radio show is that one might not be evaluating the exact same policy implemented by policymakers. On this, it is important to note that even though the NGOs pay for the shows, the creative process relies on the production company. To emulate the policy creation process as closely as possible, I follow the exact same steps Nigerian NGOs take to create their radio shows. These steps are straightforward. (i) The NGO hires the production company to create a new radio show. (ii) The NGO provides one page of pointers stating the main message they want the show to convey. (iii) The production company gets back to the NGO with an outline of the story and how it conveys the message, and the NGO approves or makes comments. (iv) The production company writes the scripts for the episodes and sends them to the NGO for approval. (v) The production company records the show and delivers the final product to the NGO.

The objective of the treatment was to reduce both hate and fear, as the treatment was to be designed before knowing which driver of conflict was best to focus on (emulating a real-life policy design). With this in mind, the pointers I gave to the production company were the following. I wanted a story that promoted interfaith peace and cooperation. The story should showcase two communities in conflict where hate and unwarranted fears lead both communities to miss out on mutually beneficial interactions. The resolution of the story should convey a message on how reevaluating fear and letting go of hate can lead to both communities being better off.

The production company then proceeded to create the radio drama *The Convergence*. It consisted of 24 episodes lasting between 10 to 15 minutes, was available in both English and Hausa and participants could listen to it in whichever language they preferred. The plot unfolds as follows: A corrupt politician offers contracts to a businessman in exchange for ensuring his victory in the election. To achieve this, the businessman assembles a team to disseminate fake news about the outgroup on social media: they burn a car and post images on online reporting that it was a deliberate attack from the other tribe that killed people. This leads to rising tensions before elections and unfair judgments about the outgroup, which re-

sult in important losses for the communities, including the unjust firing of an outstanding schoolteacher due to her tribal affiliation and the rejection of a beneficial NGO program solely because its leader came from a different tribe. Moreover, one key character harbors deep hatred toward the other tribe because of past family tragedies caused by the ongoing conflict. As the story reaches its resolution, the communities uncover the politician's manipulation scheme and vote him out of office; the businessman flees the country, while his collaborators face imprisonment; and the character with hatred has a character arc where she heals her resentments, enabling her to form meaningful friendships with members of the other tribe. The story ends with a message of unity.

9.3. RCT design

The RCT for the radio show was conducted in the following manner. At first, the surveying company recruited subjects to participate in two lab-in-the-field experiments, which were held two months apart, for a project of the University of California. To minimize experimenter demand effects, enumerators only asked participants if they were interested in taking part in "a different project the surveying company was carrying out" at the conclusion of the initial lab experiment. This second project was for a media production company, and participants were told that it involved listening to a new radio drama that was being released and providing feedback on it. Participants were also informed that they could listen to it during some period before the second lab experiment, which they had already agreed to participate in. Those who were interested were invited to sign up right away and were told that they would receive additional information through WhatsApp in the following days. Because all participants had already given their phone numbers to schedule the second lab experiment, signing up for "the radio show project" took no time and all participants agreed to be contacted for it too. Importantly, participants were also told that participation on the radio show project was being offered to all those participating in the lab experiment.

Participants were randomly assigned to either the treatment or control groups. The show was not broadcasted, but instead episodes were sent to participants through WhatsApp four times a week (on Mondays, Wednesdays, Fridays and Saturdays) over a six-week period. To promote and monitor engagement, every Saturday participants received a quiz on the content of that week's episodes. Answering the quiz correctly put people in a weekly lottery for two prizes of \$2,000 naira, and gave them one entry to the two grand prizes of \$50,000 naira, which were awarded at the end of the sixth week. The control group was sent a placebo radio show with a message on health. They also received weekly quizzes with the same scheme of prizes.

A week after the radio show ended, the endline lab-in-the-field experiment started. Participants in the treatment and control groups went through the lab experiment again, which allowed me to remeasure their levels of hate, fear and cooperation to estimate the effects of the radio drama on each margin. Half of the participants were assigned to the treatment group and the other half to the control group. These groups were balanced on baseline levels of cooperation, social preferences, beliefs, religion, sex, age and other characteristics. A balance table can be found in Appendix C2. The attrition rate at the endline lab experiment was 5%, which excludes self-selection on this dimension as an issue of the analysis.

10. Results of the RCT

10.1. Average treatment effect (ATE)

The main specification to study the effects of the radio show is the following.

$$Y_i = \gamma_0 + \gamma_1 Treated_i + \gamma_2 X_i + \varepsilon_i$$

Where Y_i is an outcome variable; *Treated*_i is a dummy variable equal to 1 if *i* belonged to the treatment group; and X_i is a vector of pre-registered controls that includes the outcome variable at baseline, plus other characteristics like religion, sex and age.

Table 4 reports the average treatment effects of the radio show on hate, fear and cooperation. Columns 1 and 2 report the effects on hate. The outcome variable in these columns is the negative of the social preferences for the outgroup, $-\beta_i$, such that a negative coefficient represents a reduction in hate. Columns 3 and 4 report the effects on fear, or the beliefs about the percentage of the outgroup that would want to not cooperate out of hate, $\tilde{P}_i(\beta_j < T)$. Columns 5 and 6 report the effect on the decision to not cooperate in the coordination game.

Table 4A reports the results for the full sample. Columns 1 and 2 show that the radio show reduced hate, although the effect is small in magnitude. Columns 3 and 4 indicate that the radio show had no effect on fear. However, it is worth noting that the point estimates have the right sign, towards reducing negative beliefs. Columns 5 and 6 show that the radio drama had no effects on cooperation either, although again the point estimate has the expected sign.

It is important to note that this first specification might be underestimating the effects of the radio show because it estimates the effects over the full sample, where there are many subjects who are mechanically unresponsive to the treatment because their outcome variable cannot improve from baseline. In other words, many subjects were fully altruistic ($\beta_i=1$) or had fully optimistic beliefs ($\tilde{P}_i(\beta_j < T) = 0$) at baseline, and therefore they would always show an effect equal to zero, at best. These zeros are not informative of the effectiveness of the intervention. Because of this, I run the same regressions restricting the sample to individuals who had margin for improvement in the outcome variable of the respective column. Results are reported in Table 4B. Columns 1 and 2, show there was a reduction in hate that is considerably greater than the one previously estimated. In particular, Column 2 indicates that listening to the radio show reduced hate by 0.19 for this groups, which is 0.45 of a standard deviation. Columns 3 and 4 still show there were no effects on fear, and the point estimates still remain small in magnitude.

A. Full sample								
	Hate $-\beta_i$		Fear $\tilde{P}_i(\beta_j < T)$		Non-Cooperation $s_i = N$			
	(1)	(2)	(3)	(4)	(5)	(6)		
Treated	-0.026**	-0.026**	-0.012	-0.012	-0.012	-0.014		
	(0.013)	(0.012)	(0.011)	(0.010)	(0.015)	(0.014)		
Controls	Ν	Y	Ν	Y	Ν	Y		
Mean Dep.Var.	823	823	.218	.218	.169	.169		
Observations	947	947	947	947	947	947		
B. Removing subject	ts who are m	echanically un	responsive	to treatme	nt			
	Hate Fear Non-Cooperation							
	$-eta_i$		$\tilde{P}_i(\beta_j < T)$		$s_i = N$			
	(1)	(2)	(3)	(4)	(5)	(6)		
Treated	-0.172**	-0.190***	-0.021	-0.021	-0.086	-0.073		
	(0.067)	(0.065)	(0.015)	(0.014)	(0.067)	(0.068)		
Controls	Ν	Y	Ν	Y	Ν	Y		
Mean Dep.Var.	079	079	.343	.343	1	1		
Observations	138	138	600	600	160	160		

Table 4: Average Treatment Effects of the Radio Show

Notes: This table reports the treatment effect of the radio show. $-\beta_i$ is negative of the social preferences for the outgroup, estimated following the approach presented in Section 3. $\tilde{P}_i(\beta_j < T)$ is the beliefs on the percentage of the outgroup that will not cooperate out of hate. $s_i = N$ is the decision to not cooperate in the coordination game. The controls are the outcome variable at baseline, religion, sex and age. Table 1A report results for the full sample. Table 2A restricts the sample to individuals who were not mechanically unresponsive to the treatment in the outcome variable of the respective column. *Mean Dep.Var.* is the mean of the dependent variable for the whole sample at baseline. Standard errors are clustered at the individual level.

And Columns 5 and 6 show that there is still no effect on cooperation, although the point estimates increases considerably.¹¹

Finding that the radio show reduces hate but does not increase cooperation could have been a puzzling result that would make it difficult to conclude if the policy was ultimately effective or not. However, this result becomes easy to rationalize under the light of study of drivers presented in this paper. The radio show is an effective policy because it reduces hate, but it is the wrong policy for this context because it does not affect the key motive for conflict, which is fear. By only affecting hate, this policy not only fails to affect the majority of non-cooperators, but also targets a group of people that even without hate will still want to not cooperate out of fear. Because of this, the policy is ultimately ineffective at achieving its main goal, which is increasing cooperation.

Figure 3 can help illustrate this result. Consider the case of individuals with preferences $\beta_i = -.25$,

¹¹In Appendix C3 I estimate, under some assumptions, the average treatment effect on the treated (ATT), using participants' answers of the weekly quizzes as a proxy for them actually listening to the radio show. I find that the ATT on hate is 3.1 times the ATE, significant at the 5% level. Still, I find no effects on fear or cooperation.

who have hateful preferences just beyond the threshold. Among those with a hateful motive to not cooperate, these are the individuals most likely to be swayed toward cooperation by the intervention. And notice that these participants believe that at least 40% of the outgroup is hateful. The radio show moves the dots of these individuals to the right, leaving them close to $\beta_i = -.05$, and effectively removing their hateful motive to not cooperate. However, the radio show does not affect beliefs, so these dots do not move vertically. Importantly, the theory presented in Section 2 states that with $\beta_i = -.05$, it is enough to believe that 23% of the outgroup is hateful to want to not cooperate. Therefore, these participants will still want to not cooperate out of fear, based on this simple graphical counterfactual.

Ultimately, while these results highlight the problems of designing policy interventions without understanding the drivers of conflict, they also showcase how my experimental protocol proves useful to deepen our understanding of policy solutions.

10.2. Heterogeneous effects by baseline levels of hate and fear

I now explore how treatment effects varied depending on how hateful or fearful participants were at baseline. To do this, I estimate the treatment effect by quartile of baseline levels of hate and fear. The estimating equation is the following:

$$Y_{i} = \gamma_{0} + \sum_{n=1}^{4} \gamma_{n} \left(Treated_{i} \times Quartile_{i}^{n} \right) + \sum_{n=1}^{4} \phi_{n} Quartile_{i}^{n} + \eta X_{i} + \varepsilon_{i}$$

Where Y_i is an outcome variable at endline; *Treated_i* is a dummy variable equal to 1 if *i* belongs to the treatment group; *Quartile_iⁿ* is dummy variable equal to 1 if *i* falls in quartile *n* of hate/fear at baseline; and X_i is a vector of controls that include religion, sex and age. As in Table 4, Panel B, I restrict the sample to only participants who where not mechanically unresponsive to treatment.

Table 5 reports the results. Column 1 looks at treatment effects on hate by baseline level of hate. Column 2 looks at treatment effects on cooperation by baseline level of hate. Column 3 looks at treatment effects on fear by baseline level of fear. Column 4 looks at treatment effects on cooperation by baseline level of fear. Column 1 shows that the treatment effect on hate was only present in quartiles 4 and 3 (where the mean β_i was -0.8 and -0.1, respectively), while there was no effect on quartiles 2 and 1 (with mean β_i of 0.5 and 0.8). In other words, the radio show was effective at changing social preferences in hateful individuals but not in altruistic ones. It was not obvious *a priori* that this would be the case, as it was plausible that hateful individuals would have more rigid social preferences. However, Column 2 shows once more that the reduction in hate failed to translate into increased cooperation. On the fear side, Column 3 shows that the radio show failed to change beliefs about the outgroup in any quartile of baseline level of fear. Consequently, Column 4 shows there was no change in cooperation by quartiles of fear.

	$Hate_{t=0}$	Hate $_{t=0}$ Quartiles		Quartiles
	Hate $-\beta_i$	No-Coop $s_i = N$	$Fear \\ \tilde{P}_i(\beta_j < T)$	No-Coop $s_i = N$
	(1)	(2)	(3)	(4)
Treated x Q4	0.389*	0.060	-0.017	0.035
	(0.207)	(0.175)	(0.025)	(0.029)
Treated x Q3	0.347**	-0.161	0.010	0.008
	(0.134)	(0.119)	(0.024)	(0.034)
Treated x Q2	0.058	-0.096	-0.037	-0.052
	(0.049)	(0.070)	(0.027)	(0.034)
Treated x Q1	0.017	-0.096	-0.045	-0.008
	(0.057)	(0.076)	(0.036)	(0.060)
Controls	Y	Y	Y	Y
Observations	138	138	600	600

Table 5: Heterogeneous Effects of the Radio Show

Notes: This table reports the heterogenous treatment effect of the radio show by quartiles of baseline level of hate and fear. $-\beta_i$ is negative of the social preferences for the outgroup, estimated following the approach presented in Section 3. $\tilde{P}_i(\beta_j < T)$ is the beliefs on the percentage of the outgroup that will not cooperate out of hate. $s_i = N$ is the decision to not cooperate in the coordination game. Column (1) looks at treatment effects on hate by baseline level of hate. Column (2) looks at treatment effects on cooperation by baseline level of fear. Column (3) looks at treatment effects on fear by baseline level of fear. Column (4) looks at treatment effects on cooperation by baseline level of fear. The controls are the dummies for each quartile, religion, sex and age. Standard errors are clustered at the individual level.

10.3. Social desirability bias

One potential threat to the results in this section is that they are driven by social desirability bias. Despite the choices made on the experimental design to reduce demand effects, one could still be concerned that listening to a radio show that aimed to promote intergroup cooperation might increase demand effects for socially desirable answers. If this is the case, the treatment group could be more prone than the control group to disingenuously express more positive attitudes towards the outgroup to present themselves in a good light to the surveyors—and this could be driving the treatment effect. I now present evidence that this was not the case. Following Dhar, Jain & Jayachandran (2022), I included in the baseline survey a module (developed by psychologists) that measures a person's propensity to give socially desirable answers. The module asks respondents if they have several too-good-to-be-true traits such as never being jealous, lazy or resentful. Those who report having more of these traits are scored as having a higher propensity to give socially desirable answers. I use these individual-level scores to see if subjects with a higher propensity to have social desirability bias seem to be more positively affected by the radio show (which could drive the results). To test for this I run the following regression.

 $Y_i = \eta_0 + \eta_1 Treated_i + \eta_2 SDS_i + \eta_3 Treated_i \times SDS_i + \eta_4 X_i + \varepsilon_i$

Where Y_i is an outcome variable; *Treated_i* is a dummy variable equal to 1 if *i* belongs to the treatment

group; SDS_i stands for social desirability score and is a variable from 1 to 10 indicating how many socially desirable answers *i* gave in that survey module; and X_i is a vector of controls that includes the outcome variable at baseline, plus other characteristics like religion, sex and age. Table 6 reports the results.

	Hate $-\beta_i$	Fear $\tilde{P}_i(\beta_j < T)$	Non-Coo. $s_i = N$
	(1)	$\frac{1}{(2)}$ (2)	(3)
Treated x SDS	0.007	0.007	0.002
	(0.007)	(0.005)	(0.008)
Treated	-0.026**	-0.012	-0.013
	(0.012)	(0.010)	(0.014)
SDS	-0.007*	-0.007*	-0.009
	(0.004)	(0.004)	(0.006)
Controls	Y	Y	Y
Mean Dep.Var.	823	.218	.169
Observations	947	947	947

Table 6: Social Desirability Bias

Notes: This table reports the treatment effect of the radio show controling for social desirability bias. $-\beta_i$ is negative of the social preferences for the outgroup, estimated following the approach presented in Section 3. $\tilde{P}_i(\beta_j < T)$ is the beliefs on the percentage of the outgroup that will not cooperate out of hate. $s_i = N$ is the decision to not cooperate in the coordination game. *SDS* refers to the individual-level social desirability bias score. The controls are the outcome variable at baseline, religion, sex and age. *Mean Dep.Var.* is the mean of the dependent variable for the whole sample at baseline. Standard errors are clustered at the individual level.

First, Row 3 indicates that participants with a higher tendency to give socially desirable answers indeed expressed less hate and less fear towards the outgroup in the lab measure. This result is important because it validates that the survey module was indeed effective at capturing people's tendency to give socially desirable answers. Crucially, Row 1 shows that the tendency to give more socially desirable answers was not higher in the treatment group vs. the control group, which indicates that listening to the radio show did not increase demand effects. In addition, Column 1, Row 2, shows that the treatment effect on hate is robust to controlling for social desirability, and what is more, this effect is of the exact same magnitude as that reported in the main specification (Table 2A). Taken together, these results provide evidence that the effects of the radio show do not appear to be driven by social desirability bias.

11. Discussion

In this paper I develop a theory-driven experimental protocol to disentangle hate and fear. I then use this protocol to understand, first, what drives conflict in a particular setting, and, second, which drivers a particular policy intervention shifts. I find that the main driver of conflict is not hate but unwarranted fears, and that interventions should focus on solving misperceptions about the outgroup to maximize the impact on cooperation. However, I also find that unwarranted fears prove hard to change with policy (even more than hate). In what remains, I discuss some questions that arise from this study.

Why do unwarranted fears exist in the first place? One plausible explanation for the existence of unwarranted fears towards the outgroup, which may point at a broader pattern, is that "bad type" individuals are more salient because their actions receive more media coverage and are more talked about. In line with well-studied psychological biases (like availability bias or 'what you see is all there is' bias (Kahneman, 2011; Enke, 2020)), people will not realize that the information they receive exaggerates the percentage of "bad type" individuals in the outgroup, which would lead to widespread misperceptions. In the US, for example, after the 2021 Capitol attack, Democrats greatly exaggerated the percentage of Republicans supporting political violence (Mernyk et al., 2022).

Why did the radio show fail to reduce unwarranted fears? Could a different radio show, or another type of intervention, succeed? I am skeptical that a radio show focused solely on reducing fear could achieve this goal, particularly because the production company believed they had no limitations in effectively delivering their message about fear. In fact, within the story of this radio show, the fear channel seemed to receive more attention than the hate channel. Could a different type of intervention have been effective at reducing fear? That is hard to know, of course. However, other interventions, like intergroup contact, have had effects on positive actions but not on trust (Lowe, 2021; Mousa, 2020). It might be the case that, in general, it is easier to convince people to treat the outgroup in a better way than to convince them that what they think about the outgroup is not correct. Moreover, the findings of this paper suggest that even when individuals recognize that a treatment influences their own behavior, they might still think such treatment will be ineffective in changing the behavior of the outgroup.

Are the results of this paper the description of one particular setting, or a more general description of intergroup relations? This is, of course, a question that cannot be answered with this one paper. However, a nice feature of this paper is that the experimental protocol I develop is portable, and can be used to study other settings of conflict and other policies for conflict, and hopefully further our understanding on the differential role that preferences and beliefs play in conflict and its resolution.

References

- Acemoglu, D. and A. Wolitzky (2023). Mistrust, misperception, and misunderstanding: Imperfect information and conflict dynamics.
- Adena, M., R. Enikolopov, M. Petrova, V. Santarosa, and E. Zhuravskaya (2015, November). Radio and the Rise of The Nazis in Prewar Germany. *The Quarterly Journal of Economics* 130(4), 1885–1939.
- Adida, C. L., A. Lo, and M. R. Platas (2018, September). Perspective taking can promote short-term inclusionary behavior toward Syrian refugees. *Proceedings of the National Academy of Sciences* 115(38), 9521–9526. Publisher: Proceedings of the National Academy of Sciences.
- Alan, S., C. Baysan, M. Gumren, and E. Kubilay (2021, November). Building Social Cohesion in Ethnically Mixed Schools: An Intervention on Perspective Taking*. *The Quarterly Journal of Economics* 136(4), 2147–2194.
- Alesina, A. and E. La Ferrara (2005, September). Ethnic Diversity and Economic Performance. *Journal of Economic Literature* 43(3), 762–800.
- Anderson, S. (2011, January). Caste as an Impediment to Trade. *American Economic Journal: Applied Economics* 3(1), 239–263.
- Banerjee, A., E. La Ferrara, and V. H. Orozco-Olvera (2020). The entertaining way to behavioral change: Fighting hiv with mtv.
- Blattman, C. (2023). Why We Fight: The Roots of War and the Paths to Peace. Penguin.
- Bonomi, G., N. Gennaioli, and G. Tabellini (2021, November). Identity, Beliefs, and Political Conflict. *The Quarterly Journal of Economics* 136(4), 2371–2411.
- Broockman, D. and J. Kalla (2016, April). Durably reducing transphobia: A field experiment on doorto-door canvassing. *Science 352*(6282), 220–224. Publisher: American Association for the Advancement of Science.
- Bénabou, R. and J. Tirole (2011, May). Identity, Morals, and Taboos: Beliefs as Assets. *The Quarterly Journal of Economics* 126(2), 805–855.
- Casey, K. (2015, August). Crossing Party Lines: The Effects of Information on Redistributive Politics. *American Economic Review 105*(8), 2410–2448.
- Charness, G. and Y. Chen (2020). Social Identity, Group Behavior, and Teams. *Annual Review of Economics 12*(1), 691–713. _eprint: https://doi.org/10.1146/annurev-economics-091619-032800.
- Chassang, S. and G. Padró i Miquel (2007). Mutual Fear and Civil War.

- Chen, Y. and S. X. Li (2009, March). Group Identity and Social Preferences. *American Economic Review* 99(1), 431–457.
- Choi, J.-K. and S. Bowles (2007, October). The Coevolution of Parochial Altruism and War. *Science* 318(5850), 636–640. Publisher: American Association for the Advancement of Science.
- DellaVigna, S. (2018, January). Structural Behavioral Economics. In B. D. Bernheim, S. DellaVigna, and D. Laibson (Eds.), Handbook of Behavioral Economics: Applications and Foundations 1, Volume 1 of Handbook of Behavioral Economics - Foundations and Applications 1, pp. 613–723. North-Holland.
- DellaVigna, S., R. Enikolopov, V. Mironova, M. Petrova, and E. Zhuravskaya (2014, July). Cross-Border Media and Nationalism: Evidence from Serbian Radio in Croatia. *American Economic Journal: Applied Economics* 6(3), 103–132.
- DellaVigna, S. and E. La Ferrara (2015, January). Economic and Social Impacts of the Media. In S. P. Anderson, J. Waldfogel, and D. Strömberg (Eds.), *Handbook of Media Economics*, Volume 1 of *Handbook of Media Economics*, pp. 723–768. North-Holland.
- Dhar, D., T. Jain, and S. Jayachandran (2022, March). Reshaping Adolescents' Gender Attitudes: Evidence from a School-Based Experiment in India. *American Economic Review* 112(3), 899–927.
- Easterly, W. and R. Levine (1997). Africa's growth tragedy: Policies and ethnic divisions. *Quarterly Journal of Economics*, 1203–1250.
- Enke, B. (2020). What you see is all there is. *Quarterly Journal of Economics* 135(3), 1363–1398.
- Enke, B., R. Rodríguez-Padilla, and F. Zimmermann (2023, July). Moral Universalism and the Structure of Ideology. *The Review of Economic Studies* 90(4), 1934–1962.
- Esteban, J., L. Mayoral, and D. Ray (2012). Ethnicity and conflict: An empirical study. *American Economic Review 102*(4), 1310–1342.
- Falk, A. and C. Zehnder (2013, April). A city-wide experiment on trust discrimination. *Journal of Public Economics* 100, 15–27.
- Fearon, J. D. and D. D. Laitin (1996, December). Explaining Interethnic Cooperation. *American Political Science Review 90*(4), 715–735. Publisher: Cambridge University Press.
- Fershtman, C. and U. Gneezy (2001). Discrimination in a segmented society: An experimental approach. *The Quarterly Journal of Economics* 116(1), 351–377.
- Fiske, A. P. and T. S. Rai (2014). Virtuous Violence: Hurting and Killing to Create, Sustain, End, and Honor Social Relationships. Cambridge University Press.

- Franck, R. and I. Rainer (2012, May). Does the Leader's Ethnicity Matter? Ethnic Favoritism, Education, and Health in Sub-Saharan Africa. *American Political Science Review* 106(2), 294–325. Publisher: Cambridge University Press.
- Francois, P., I. Rainer, and F. Trebbi (2015). How is power shared in africa? *Econometrica* 83(2), 465–503.
- Ghosh, A. (2022, August). Religious Divisions and Production Technology: Experimental Evidence from India.
- Giuliano, L., D. I. Levine, and J. Leonard (2009, October). Manager Race and the Race of New Hires. *Journal of Labor Economics* 27(4), 589–631. Publisher: The University of Chicago Press.
- Hjort, J. (2014, November). Ethnic Divisions and Production in Firms. *The Quarterly Journal of Economics* 129(4), 1899–1946.
- Hodler, R. and P. A. Raschky (2014, May). Regional Favoritism. *The Quarterly Journal of Economics* 129(2), 995–1033.
- Jha, S. (2013). Trade, institutions, and ethnic tolerance: Evidence from south asia. *American political Science review 107*(4), 806–832.
- Kahneman, D. (2011). Thinking, Fast and Slow. Macmillan.
- Kneeland, T. (2015). Identifying higher-order rationality. *Econometrica* 83(5), 2065–2079.
- Korovkin, V. and A. Makarin (2023, January). Conflict and Intergroup Trade: Evidence from the 2014 Russia-Ukraine Crisis. *American Economic Review* 113(1), 34–70.
- Kramon, E. and D. N. Posner (2016, April). Ethnic Favoritism in Education in Kenya. *Quarterly Journal of Political Science* 11(1), 1–58. Publisher: Now Publishers, Inc.
- Kranton, R., M. Pease, S. Sanders, and S. Huettel (2020, September). Deconstructing bias in social preferences reveals groupy and not-groupy behavior. *Proceedings of the National Academy of Sciences* 117(35), 21185–21193. Publisher: Proceedings of the National Academy of Sciences.
- Kromka, S. M. and A. K. Goodboy (2019, January). Classroom storytelling: using instructor narratives to increase student recall, affect, and attention. *Communication Education 68*(1), 20–43. Publisher: Routledge _eprint: https://doi.org/10.1080/03634523.2018.1529330.
- La Ferrara, E. (2016). Mass media and social change: Can we use television to fight poverty? *Journal of the European Economic Association 14*(4), 791–827.

- Lowe, M. (2021, June). Types of Contact: A Field Experiment on Collaborative and Adversarial Caste Integration. *American Economic Review 111*(6), 1807–1844.
- Luttmer, E. F. P. (2001, June). Group Loyalty and the Taste for Redistribution. *Journal of Political Economy 109*(3), 500–528. Publisher: The University of Chicago Press.
- Marx, B., V. Pons, and T. Suri (2021, May). Diversity and team performance in a Kenyan organization. *Journal of Public Economics* 197, 104332.
- Mernyk, J. S., S. L. Pink, J. N. Druckman, and R. Willer (2022). Correcting inaccurate metaperceptions reduces americans' support for partian violence. *Proceedings of the National Academy of Sciences* 119(16), e2116851119.
- Michelitch, K. (2015, February). Does Electoral Competition Exacerbate Interethnic or Interpartisan Economic Discrimination? Evidence from a Field Experiment in Market Price Bargaining. *American Political Science Review 109*(1), 43–61. Publisher: Cambridge University Press.
- Mousa, S. (2020, August). Building social cohesion between Christians and Muslims through soccer in post-ISIS Iraq. *Science 369*(6505), 866–870. Publisher: American Association for the Advancement of Science.
- Oh, S. (2023, August). Does Identity Affect Labor Supply? *American Economic Review 113*(8), 2055–2083.
- Padró i Miquel, G. (2007, October). The Control of Politicians in Divided Societies: The Politics of Fear. *The Review of Economic Studies* 74(4), 1259–1274.
- Paluck, E. L. (2009, March). Reducing intergroup prejudice and conflict using the media: a field experiment in Rwanda. *Journal of Personality and Social Psychology* 96(3), 574–587.
- Paluck, E. L., S. A. Green, and D. P. Green (2019, November). The contact hypothesis re-evaluated. *Behavioural Public Policy* 3(2), 129–158. Publisher: Cambridge University Press.
- Paluck, E. L., R. Porat, C. S. Clark, and D. P. Green (2021). Prejudice Reduction: Progress and Challenges. *Annual Review of Psychology* 72(1), 533–560. _eprint: https://doi.org/10.1146/annurevpsych-071620-030619.
- Rabin, M. (2000). Risk Aversion and Expected-Utility Theory: A Calibration Theorem. *Econometrica* 68(5), 1281–1292. Publisher: [Wiley, Econometric Society].
- Rao, G. (2019, March). Familiarity Does Not Breed Contempt: Generosity, Discrimination, and Diversity in Delhi Schools. *American Economic Review* 109(3), 774–809.
- Rohner, D. (2024). The peace formula. Cambridge Books.

- Rohner, D., M. Thoenig, and F. Zilibotti (2013). War signals: A theory of trade, trust, and conflict. *Review of Economic Studies 80*(3), 1114–1147.
- Rubinstein, A. (1989). The Electronic Mail Game: Strategic Behavior Under "Almost Common Knowledge". *The American Economic Review 79*(3), 385–391. Publisher: American Economic Association.
- Scacco, A. and S. S. Warren (2018, August). Can Social Contact Reduce Prejudice and Discrimination?
 Evidence from a Field Experiment in Nigeria. *American Political Science Review 112*(3), 654–677.
 Publisher: Cambridge University Press.
- Shayo, M. (2020). Social Identity and Economic Policy. *Annual Review of Economics* 12(1), 355–389. _eprint: https://doi.org/10.1146/annurev-economics-082019-110313.
- Slater, M. D. and D. Rouner (2002, May). Entertainment-Education and Elaboration Likelihood: Understanding the Processing of Narrative Persuasion. *Communication Theory* 12(2), 173–191.
- Tajfel, H. and J. C. Turner (2004). The social identity theory of intergroup behavior. In *Political Psychology*, pp. 276–293. Psychology Press.
- Tur-Prats, A. and F. Valencia Caicedo (2020). The long shadow of the spanish civil war.
- Yanagizawa-Drott, D. (2014, November). Propaganda and Conflict: Evidence from the Rwandan Genocide. *The Quarterly Journal of Economics* 129(4), 1947–1994.

Appendix

Appendix A. Theoretical Model	46
A1. Extensions of the theoretical model	46
A2. Derivations of the theoretical model	47
Appendix B. Structural Model	49
B1. Alternative empirical models	49
B2. Higher-Order Beliefs	53
B3. Comparing Structurally Estimated Parameters and Calibrated Parameters	55
Appendix C. Results	57
C1. Social Desirability Bias in the Measure of Hate Measure	57
C2. RCT Balance Table	58
C3. Radio Show's Average Treatment Effect on the Treated	58
Appendix D. Lab Experiment	59
D1. Screenshots	59
D2. Experimental Protocol	63
D3. Money Allocation Decisions Algorithm	76

Appendix A. Theoretical Model

A1. Extensions of the theoretical model

Endogenous social preferences

An individual's utility function is

$$u_i = x_i + \beta_i(Z_i) \cdot x_j \tag{4}$$

In the model presented in the paper Z_i is said to be predetermined. The following extension of the model considers the case in which social preferences are endogenous to the beliefs about the social preferences of others (in the spirit of Rabin (1993) and Levine (1999)). This formulation allows people to have social preferences that depend on reciprocity. In other words, people may have higher social preferences for those who they belief have higher social preferences towards them, and lower social preferences for those who they believe have lower social preferences towards them.

Let β_j be *i*'s believe about the expected social preferences of *j* given that *j* belongs to the outgroup O—that is, *i*'s beliefs about $E[\beta_j|j\in O]$. Then, $\beta_i(\tilde{\beta}_j)$. In particular, β_i has the following functional form.

$$\beta_i = \frac{\alpha_i + \lambda \tilde{\beta}_j}{1 + \lambda}$$
$$u_i = x_i + \left(\frac{\alpha_i + \lambda \tilde{\beta}_j}{1 + \lambda}\right) \cdot x_j$$

Where $\alpha_i \in [-1, 1]$ is *i*'s base social preferences. The base social preferences are adjusted by a reciprocity parameter $\lambda \in [0, 1]$. A $\lambda > 0$ means that *i* wants to adjust her base social preferences in order to correspond to the social preferences she believes *j* has towards her. Note that in this formulation it is still the case that $\beta_i \in [-1, 1]$. And note that when $\lambda = 0$ and there is no reciprocity in social preferences, $\beta_i = \alpha_i$ and the model goes back to the original presented in Section 2 of the paper.

Utility function with different social preferences parameters for the ingroup and the outgroup

In the model presented in Section 2 of the paper it is always the case that j belongs to the outgroup, $j \in O$. One simple extension allows for j to belong to the outgroup or the ingroup, $j \in \{I, O\}$, and for i to have different social preferences for j depending on which group j belongs to. In this case, i has one social preference parameter for people from the in group, β_{iI} , and one different social preference parameter for people from the ingroup, β_{iO} . The utility function is the following:

$$u_i(x_i, x_j) = x_i + (\beta_{iI} \cdot \mathbb{1}(j \in I) + \beta_{iO} \cdot \mathbb{1}(j \in O))x_j$$

With this formulation, depending on which group j belongs to, i uses a different social preference parameter in the interaction. Additionally, the distance $|\beta_{iI} - \beta_{iO}|$ captures i's level of ingroup bias (or moral universalism), where $|\beta_{iI} - \beta_{iO}| = 0$ means i has no ingroup bias (or full moral universalism), and a higher $|\beta_{iI} - \beta_{iO}|$ means a higher level of ingroup bias.

A2. Derivations of the theoretical model

Derivation of Equation (3)

The following is the derivation of the threshold to not cooperate out of fear described by equation (3). The condition determines how fearful a person must be, given her level of social preferences, to prefer to not cooperate.

	С	Ν
С	1000,1000	500,900
Ν	900 , 500	750,750

$$W_i(s_i) = \tilde{P}_i(s_j = N) \cdot u_i(s_i, N) + \tilde{P}_i(s_j = C) \cdot u_i(s_i, C)$$

Given this, *i* chooses to not cooperate if $W_i(N) \ge W_i(C)$. Solving for $\tilde{P}_i(s_j=N)$ yields the following.

$$W_i(N) \ge W_i(C)$$

$$\tilde{P}_i(s_j = N) \cdot u_i(N, N) + \tilde{P}_i(s_j = C) \cdot u_i(N, C) \ge \tilde{P}_i(s_j = N) \cdot u_i(C, N) + \tilde{P}_i(s_j = C) \cdot u_i(C, C)$$

Replace $\tilde{P}_i(s_j = C) = 1 - \tilde{P}_i(s_j = N)$ and let $\tilde{P}_i(s_j = N) = \tilde{p}$

$$\begin{split} \tilde{p} \cdot u_i(N,N) \,+\, (1-\tilde{p}) \cdot u_i(N,C) \,&\geq\, \tilde{p} \cdot u_i(C,N) \,+\, (1-\tilde{p}) \cdot u_i(C,C) \\ \tilde{p} \cdot u_i(N,N) \,+\, u_i(N,C) \,-\, \tilde{p} \cdot u_i(N,C) \,&\geq\, \tilde{p} \cdot u_i(C,N) \,+\, u_i(C,C) \,-\, \tilde{p} \cdot u_i(C,C) \\ \tilde{p} \cdot u_i(N,N) \,-\, \tilde{p} \cdot u_i(N,C) \,+\, \tilde{p} \cdot u_i(C,C) \,-\, \tilde{p} \cdot u_i(C,N) \,&\geq\, u_i(C,C) \,-\, u_i(N,C) \\ \tilde{p} \Big(u_i(C,C) - u_i(N,C) \,+\, u_i(N,N) - u_i(C,N) \Big) \,\geq\, u_i(C,C) - u_i(N,C) \\ \tilde{p} \,\geq\, \frac{u_i(C,C) - u_i(N,C) \,+\, u_i(N,N) - u_i(C,N)}{u_i(C,C) - u_i(N,C) \,+\, u_i(N,N) - u_i(C,N)} \end{split}$$

Replacing the utilities:

$$\tilde{p} \geq \frac{(1000 + \beta_i 1000) - (900 + \beta_i 500)}{(1000 + \beta_i 1000) - (900 + \beta_i 500) + (750 + \beta_i 750) - (500 + \beta_i 900)}$$

$$\tilde{p} \geq \frac{100 + \beta_i 500}{350 + \beta_i 350}$$

Derivation of Equation (3) with payoff shifters

Now consider the case with payoff shifters. The following table shows the utilities i would get in each scenario in of the game.

	С	Ν
С	$1000 + \beta_i 1000 + \eta$	$500+\beta_i 900+\psi$
Ν	$900+\beta_i 500+\gamma$	$750 + \beta_i 750 + \rho$

Taking into account the process above we know:

$$\tilde{p} \ge \frac{u_i(C,C) - u_i(N,C)}{u_i(C,C) - u_i(N,C) + u_i(N,N) - u_i(C,N)}$$

Replacing the utilities:

$$\begin{split} \tilde{p} &\geq \frac{(1000 + \beta_i 1000 + \eta) - (900 + \beta_i 500 + \gamma)}{(1000 + \beta_i 1000 + \eta) - (900 + \beta_i 500 + \gamma) + (750 + \beta_i 750 + \rho) - (500 + \beta_i 900 + \psi)} \\ \tilde{p} &\geq \frac{100 + \beta_i 500 + \eta - \gamma}{350 + \beta_i 350 + \eta - \gamma + \rho - \psi} \end{split}$$

Empirically, only $(\eta - \gamma)$ and $(\rho - \psi)$ are identified. This is why in the empirical model (and abusing notation) I only estimate a γ , that is actually capturing $(\eta - \gamma)$, and a ψ , that is actually capturing $(\rho - \psi)$.

Appendix B. Structural Model

B1. Alternative Empirical Models

For all the following empirical models I test, the utility function in the money allocation decisions is:

$$u(d_{im}) = x_i(d_{im}) + \beta_i \cdot x_j(d_{im}) + \varepsilon_{d_{im}}$$

Where $d_{im} \in \{Opt1, Opt2\}$, $x_i(d_{im})$ is the payoff *i* gets when she chooses d_{im} in money allocation decision *m*, and $\varepsilon_{d_{im}}$ is an idiosyncratic error that has an extreme value distribution with mean zero. The data consists of is d_{im} and the payoffs for *i* and *j* in each option of each money allocation decision. The unknown parameter is β_i .

In what follows I test different empirical models in which I vary the expected utility functions that would be used in the coordination game.

Most restricted expected utility function

The first model I test has an expected utility function as defined in theoretical model of Section 3. The expected utility function is the following.

$$W(s_i) = \tilde{P}_i(s_j = C) \cdot u(s_i, s_j = C) + \tilde{P}_i(s_j = N) \cdot u(s_i, s_j = N) + \varepsilon_{s_i}$$
$$u(s_i, s_j) = x_i(s_i, s_j) + \beta_i \cdot x_j(s_i, s_j)$$

Where $\tilde{P}_i(s_j=s)$ is *i*'s subjective beliefs on $P(s_j=s)$, given that $j \in B$, $x_i(s_i, s_j)$ is the payoff *i* gets when she chooses s_i and *j* chooses s_j in the game, and ε_{s_i} is an idiosyncratic error that has an extreme value distribution with mean zero. The data consists of s_{ig} , $\tilde{P}_i(s_{jg}=N)$, and the payoffs for *i* and *j* in all four scenarios of each game. The unknown parameter is β_i .

I use a random coefficient model to estimate the parameters of the distribution of β_i (mean μ_β , and variance σ_β), as explained in Section 7. The results are reported in Table B1.1.

	Coefficient	Stand, Err.	
	Coefficient	Stanu. LII.	
μ_{eta}	0.951	0.064	***
σ_{eta}	0.447	0.062	***
Obs	ervations	g	,006
Clusters			997
Likelihood		-3	,497

Table B1.1: Most Restricted Model

Notes: This table reports the results of the simulated maximum likelihood estimation of a random coefficients model. Each observation is one decision of one participant in either a money allocation decision or a coordination game. μ_{β} and σ_{β} are the mean and variance of the distribution of the parameters of social preferences. Standard errors are clustered at the individual level.

The in-sample fit performance of this model is 90% for the full sample and 43% for non-cooperators. In other words, the parameters estimated correctly predict the decisions taken by 90% of participants in the experiment and 43% of participants that decided to not-cooperate in the experiment. The reason why this model does a poor job at explaining non-cooperative behavior is that half of the people who did not cooperate are fully altruistic, as shown in Figure 2. If $\psi_i=0$, a fully altruistic person would want to not cooperate only if she believes that $P(s_j=N)>0.86$. However, fully altruistic non-cooperators believe, on average, that $P(s_j=N)=0.6$. This implies that the potential costs of cooperating go beyond the monetary one. To account for this and increase the model fit in non-cooperators, I test more flexible models.

Risk aversion

One first approach to relax the initial model assumptions would be to have an expected utility function that allows for risk aversion. I discard this approach because, theoretically, at this level of prices individuals should not exhibit risk aversion. Indeed, empirically this is what I find in the field. Using a canonical survey module to measure risk aversion, I find that over 90% of individuals are risk-neutral at this level of prices. In addition, the behavioral literature suggests that at low prices, behavior is better explained by loss aversion than risk aversion (Rabin, 2000; DellaVigna, 2018). Because of this, the first variation of the model I test is one with a parameter that could capture loss aversion (and other psychological costs that would vary the level of fear needed to want to not cooperate).

A payoff shifter for the case $(s_i=C, s_j=N)$

In search for a better model fit with the data, I relax the functional assumption and consider a model with a payoff shifter for the case $(s_i=C, s_j=N)$ to capture any psychological cost or benefit that might be playing a role in this case. Let ψ be the parameter which captures the psychological cost of cooperating when the other person does not. ψ could capture the psychological cost of getting what is usually described as the "sucker's payoff". Another psychological cost ψ could capture is loss aversion, where the reference point is (C, C).

Ultimately, a negative ψ raises the cost of cooperating when the other player does not, and therefore lowers the level of fear needed to want to not cooperate (see Appendix A2 for the derivation of the new fear threshold). The expected utility function is now the following:

$$W(s_i) = \tilde{P}_i(s_j = C) \cdot u(s_i, s_j = C) + \tilde{P}_i(s_j = N) \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i}$$

The data consists of s_{ig} , $\tilde{P}_i(s_{jg}=N)$, and the payoffs for *i* and *j* in all four scenarios of each game. The unknown parameters are β_i and ψ . Notice also that the first model is nested in this one.

I use a random coefficient model to estimate the parameters of the distribution of β_i (mean μ_β , and variance σ_β) and the parameter ψ , as explained in Section 4. The results are reported in Table B1.2.

	Table B1.2:	Model with a	ψ
	Coefficient	Stand. Err.	
μ_{eta}	0.936	0.071	***
σ_{eta}	0.419	0.061	***
ψ	-539.4	108.2	***
Observations			9,006
Clusters			997
Likelihood		-3	3,299

Table B1.2: Model with ψ

Notes: This table reports the results of the simulated maximum likelihood estimation of a random coefficients model. Each observation is one decision of one participant in either a money allocation decision or a coordination game. μ_{β} and σ_{β} are the mean and variance of the distribution of the parameters of social preferences. ψ is a payoff shifter for the case ($s_i=C, s_j=N$). Standard errors are clustered at the individual level.

The first thing to note is that the estimated parameter ψ is significant, which indicates that is seems to matter in the decision problem. The in-sample fit performance of this model is 96% for the full sample and 91% for non-cooperators. In other words, the parameters estimated correctly predict the decisions taken by 96% of participants in the experiment and 91% of participants that decided to not-cooperate in the experiment. The model fit for non cooperators increases substantially when compared to the previous model. This reveals that the potential costs of cooperating seem to go beyond a monetary loss and include psychological costs. In the end, this model is empirically superior to the one without ψ .

Full flexible model: Adding a payoff shifter for the case $(s_i=N, s_j=C)$

Ultimately, the parameter ψ from the previous model is a payoff shifter that changes the way in which *i* perceives the payoffs from each strategy in the case where *j* does not cooperate. This begs the question if a symmetric payoff shifter for the case where *j* cooperates would also increase the explanatory power of the model. Such a payoff shifter would change the way in which *i* perceives the payoffs from each strategy in the case where *j* cooperates and would give full flexibility to the emprical model. Call this parameter γ , which, if positive, could represent a psychological benefit of giving the "sucker's payoff" to the other player. Such a benefit would lower the threshold at which a person becomes hateful enough to want to not cooperate out of hate. If γ was instead negative, it could capture a taste for mutual cooperation, or loss aversion with (C, C) as the reference point. The expected utility function is now the following:

$$W(s_i) = \tilde{P}_i(s_j = C) \left[u(s_i, s_j = C) + \gamma \cdot \mathbb{1}(s_i = C) \right] + \tilde{P}_i(s_j = N) \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i} \left[u(s_i, s_j = N) + \psi \cdot \mathbb{1}(s_i = C) \right] \right]$$

The data consists of s_{ig} , $\tilde{P}_i(s_{jg}=N)$, and the payoffs for *i* and *j* in all four scenarios of each game. The unknown parameters are β_i , ψ and γ . Notice also that the first two models are nested in this one.

I use a random coefficient model to estimate the parameters of the distribution of β_i (mean μ_β , and variance σ_β) and the parameters ψ and γ , as explained in Section 7. The results are reported in Table

	Coefficient	Stand. Err.	
11.0	0.938	0.069	***
$\mu_eta\ \sigma_eta$	0.420	0.059	***
ψ	565.4	177.2	***
$\dot{\gamma}$	25.8	127.8	
Obs	servations		9,006
Clusters			997
Likelihood		-:	3,299

B1.3: Fully Flexible Model

Notes: This table reports the results of the simulated maximum likelihood estimation of the random coefficients model presented in Section 4. Each observation is one decision of one participant in either a money allocation decision or a coordination game. μ_{β} and σ_{β} are the mean and variance of the distribution of the parameters of social preferences. ψ is a payoff shifter for the case ($s_i=C, s_j=N$). γ is a payoff shifter for the case ($s_i=C, s_j=C$). Standard errors are clustered at the individual level.

The first thing to note is that the parameter γ is not significant, and the likelihood this model reaches is not greater than the previous model that had no γ . This indicates that there does not seem to be a psychological benefit or cost that shift the perceived payoffs in the case when j cooperates.

The fact that the payoff shifter ψ is significant and γ is not can be understood by considering Figure 3. The payoff shifter γ would move the cooperation threshold represented by the vertical line. Instead, the payoff shifted ψ would move the cooperation threshold represented by the curved line. As one can see graphically, moving the vertical line would not improve the fit, because to the left of it there are only non-cooperators (as the theory predicts). Instead, moving the curved line with the payoff shifter ψ would improve the sample fit because above this curved line there are some non-cooperators that the simplest model is not able to explain.

In conclusion, there is only one psychological cost/benefit that seems to be playing a role in the decision problem. In this sense, the previous model, with ψ and no γ , is empirically superior to this one.

Having ψ at the individual level (ψ_i)

Given that the estimation occurs in the environment of random coefficients, one can easily increase the flexibility of the model to get a better fit by taking ψ to be a random coefficient too, not just β_i . In this sense, every person has a different ψ_i that comes from a distribution with mean μ_{ψ} and variance σ_{ψ}^2 . For this case, the expected utility function is the following.

$$W(s_i) = \tilde{P}_i(s_j = C) \cdot u(s_i, s_j = C) + \tilde{P}_i(s_j = N) \left[u(s_i, s_j = N) - \psi_i \cdot \mathbb{1}(s_i = C) \right] + \varepsilon_{s_i}$$

The data consists of s_{ig} , $\tilde{P}_i(s_{jg}=N)$, and the payoffs for *i* and *j* in all four scenarios of each game. The unknown parameters are β_i and ψ_i . I use a random coefficient model to estimate the parameters of the distributions of β_i (mean μ_β , and variance σ_β) and ψ_i (mean μ_ψ , and variance σ_ψ), as explained in Section 7. The results are reported in Table B1.4.

1	able D1.4 : Inc	lividuai-Leve	ψ_i
	Coefficient	Stand. Err.	
μ_{eta}	0.922	0.072	***
σ_{eta}	0.420	0.059	***
μ_{ψ}	532.7	108.6	***
$\mu_\psi \ \sigma_\psi$	469.2	163.7	***
Observations		ļ	9,006
Clusters			997
Likelihood		-6	3,267

Table B1.4: Individual-Level ψ_i

Notes: This table reports the results of the simulated maximum likelihood estimation of the random coefficients model presented in Section 4. Each observation is one decision of one participant in either a money allocation decision or a coordination game. μ_{β} and σ_{β} are the mean and variance of the distribution of the parameters of social preferences. μ_{ψ} and σ_{ψ} are the mean and variance of the distribution of the parameters are clustered at the individual level.

The first thing to note is that the estimated parameters of ψ 's distribution are significant, which indicates that there seems to be some individual level variation in ψ_i (which is especially noticeable by the magnitude of σ_{ψ}). The in-sample fit performance of this model is 99% for the full sample and 95% for non-cooperators. In other words, the parameters estimated correctly predict the decisions taken by 99% of participants in the experiment and 95% of participants that decided to not-cooperate in the experiment. Compared to the other model with one ψ for everyone, this model presents a better sample fit and reaches a higher likelihood. In this sense, this model is empirically superior to the one individuallevel loss aversion.

This is then the preferred model over all, as it seems to be the one to best represent the behavior observed in the lab. Because this, this is the the model selected for the paper and the one presented in Section 8.

B2. Higher Order Beliefs

As mentioned earlier, the estimated model with the base utility function only predicts correctly the choices of 43% of non-cooperators. Although the psychological cost ψ seems to account quite well for what that model is missing, an alternative explanation is that in the model I should account for higher order beliefs in order to get a better sample fit. In what follows I show evidence of why it is unlikely that higher order beliefs are playing a role in the lab decisions. In addition, I estimate the upper bound of how much could higher order beliefs matter if I relaxed this assumption.

Evidence that participants do not form higher-order beliefs in the lab game

The first piece of evidence that supports that participants do not form higher-order beliefs in the lab game is the fieldwork done during the pilot. When talking to participants to understand their reasoning behind their decision in the game, no explanation that resembled higher-order beliefs ever came up. If the participant gave a justification on why they thought their match would not cooperate, it always had to do with the belief that their match wanted to lower their payoff. When asked specifically about higher order beliefs in the game, participant struggle a lot to understand (or did not understand at all) how beliefs on beliefs should be affecting their decision and that of their partner. It is worth remarking that this was the first time the participants faced a game like this, so understanding the basics of the game was already demanding enough.

Importantly, this anecdotal evidence from the fieldwork falls in line with the ample evidence in the experimental literature that states that, on average, people do not form higher order beliefs when playing games (Rubinstein, 1989; Kneeland, 2015). And what is more, they are less likely to form higher order beliefs if their are playing a game for the first time (as was the case in my setting).

Beyond this, the data in of the experiment does not seem to suggest that higher order beliefs are part of participants decisions. Assuming higher order beliefs are not perfectly correlated with first order beliefs, one should expect that people with the same preferences and first order beliefs could behave differently because they could have different higher order beliefs. However, the data shows that preferences and first order beliefs seem to explain almost all the variation in behavior. Figure B2.1 shows evidence on this.

Figure B2.1: Variance in Cooperation Decisions for each Preferences-First Order Beliefs Level

The figure reports how much variance there is in cooperation decisions within a each preferencefirst order beliefs level. I find that there is very little variance in behavior when controlling for the level of preferences and first order beliefs. 77% of the levels show zero variance in decisions. This is evidence that the model lack of fit with the data is probably not coming from missspecified beliefs, but instead from a misspecified thresholds of cooperation. Indeed, as shown in the previous section, changing the thresholds of cooperations (in particular, that of fear) through payoff shifters proves to be rather effective at increasing the sample fit of the model.

Upper bound of higher-order beliefs

As argued before, it is unlikely that higher order beliefs are playing a role in the decisions in the game. Regardless, one can explore how big would their role be if we assumed that all the lack of fit from the model all comes from only higher order beliefs. This is a very strong assumption, as it assumes that participants have no risk aversion, loss aversion or psychological costs/benefits, so higher order beliefs is the only thing that can explain the wrong predictions the model makes when only considering first order beliefs. However, this can still be an illustrative exercise.

Under this assumption, I calculate for each person how much more fear would they need to have in order to act the way the acted. Specifically, I find how many percentage points of fear more do each person need to explain their behavior. With this information, I can calculate what percentage of the fear needed to act in the way a person acted should be coming from higher-order beliefs. I find that the level of fear needed for observed behavior that is unaccounted for by first order would be 3% for the full sample, 19% for all non-cooperators, and 27% for non-cooperators without a hateful motives to not cooperate. This puts an upper bound to the role higher order beliefs might be playing. However, for the reasons explained above, I believe this is unlikely that this is the case.

B3. Comparing Structurally Estimated Parameters and Calibrated Parameters

The following graph is a scatter plot of the recovered β_i from the two different methods used in the paper, the calibration method and the structural estimation. The linear fit has a coefficient of 0.84.

Figure B3.1: Correlation of Recovered Parameters

Appendix C. Results

C1. Social Desirability Bias and the Drivers of Conflict

One potential concern is that the elicited hate is affected by social desirability bias, and that this, in turn, biases the analysis of the drivers of conflict. Despite the choices made on the experimental design to reduce demand effects, one might be concerned that participants realize the lab experiment is about religious division, and, considering this, might disingenuously express more positive preferences towards the outgroup to present themselves in a good light to the surveyors. To check how robust the analysis of the drivers of conclict is to social desirability bias, I do the following. In the baseline survey, I include a module (developed by psychologists) that measures a person's propensity to give socially desirable answers. The module asks respondents if they have several too-good-to-be-true traits such as never being jealous, lazy or resentful. Those who report having more of these traits are scored as having a higher propensity to give socially desirable answers. I use these individual-level social desirability scores to correct the estimated social preferences in the following way. Let the biased estimated social preferences be:

$$\beta_{i,\text{biased}} = \beta_{i,\text{true}} + \phi \text{SDS}_i$$

Where SDS_i stands for social desirability score and is a variable from 1 to 10 indicating how many socially desirable answers *i* gave in that survey module.

I estimate ϕ by regressing $\beta_{i,\text{biased}}$ on SDS_{*i*}. Then, to get $\beta_{i,\text{true}}$, I compute $\beta_{i,\text{true}} = \beta_{i,\text{biased}} - \phi \text{SDS}_i$ for each person. I then replace $\beta_{i,\text{biased}}$ for $\beta_{i,\text{true}}$ in the structural model and see how the analysis changes.

The estimated ϕ is 0.04, significant at the 1% level. After replacing $\beta_{i,\text{biased}}$ for $\beta_{i,\text{true}}$ in the model, the analysis changes as follows. The amount of people not cooperating increased by 8%. The percentage of people not cooperating out of hate is 30%, and the percentage of people not cooperating out of fear is 70%. That is, correcting parameters for social desirability bias reveals a higher level of non-cooperation and a higher proportion of non-cooperation out of hate. However, these numbers are not very different from those presented in section 8.1, and therefore the analysis and conclusions remain virtually unchanged.

C2. RCT Balance Table

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	No-Coop	Soc.Pref.	Beliefs	Religion	Gender	Age	SDS
Treated	0.014	-0.004	0.004	-0.005	0.003	0.022	0.117
	(0.024)	(0.025)	(0.015)	(0.033)	(0.032)	(0.733)	(0.131)
Observations	947	947	947	947	947	947	947

Table C3.1: Treatment Balance on Observables

Notes: This tables shows how the different characteristics were balanced between the treatment and the contrel group. *Treated* is the dummy that indicates treatment status. *No-Coop* is a dummy for $s_i=N$. *Soc.Pref.* is the parameter of social preferences β_i . *Beliefs* is the beliefs about the percentage of the outgroup that is hateful beyond the threshold, $\tilde{P}_i(\beta_j < T)$. *Religion* is a dummy equal to 1 if *i* is Christian. *Gender* is a dummy equal to 1 if *i* is female. *SDS* is the social dominance score as defined in Section 10.3.

C3. Radio Show's Average Treatment Effect on the Treated

I do not have information on how many people actually listened to the radio show. However, I know that only 33% of the participants answered at least one of the quizzes about the radio show. It is hard to know to what extent this percentage reflects the number of people who actually listened to the radio show, but the number suggests that it might have been the case that a majority of people did not listen to the radio show. If this is the case, one would like to estimate the treatment effect on the treated (ATT). Under the assumption that everyone who listened to the radio show answered at least one quiz and everyone who did not listen answered no quiz, I can use the treatment assignment as an IV for listening to the radio show, and estimate the ATT. Table C3.1 shows that the ATT on hate is 3.1 times the ATE. There are still no effects on fear or cooperation, consistent with the previous findings.

	Hate $-\beta_i$	Fear $\frac{\tilde{P}_i(\beta_j < T)}{(0)}$	$\frac{\text{Non-Coo.}}{s_i = N}$
	(1)	(2)	(3)
Treated	-0.080** (0.037)	-0.038 (0.032)	-0.043 (0.043)
Controls	Y	Y	Y
Mean Dep.Var.	.823	.218	.169
Observations	947	947	947

Table C3.1: Average	Treatment E	ffect on the T	Freated (ATT)
---------------------	-------------	----------------	---------------

Notes: This table reports the radio show's average treatment effect on the treated. $-\beta_i$ is negative of the social preferences for the outgroup, estimated following the approach presented in Section 3. $\tilde{P}_i(\beta_j < T)$ is the beliefs on the percentage of the outgroup that will not cooperate out of hate. $s_i = N$ is the decision to not cooperate in the coordination game. The controls are the outcome variable at baseline, religion, sex and age. *Mean Dep.Var.* is the mean of the dependent variable for the whole sample at baseline. Standard errors are clustered at the individual level.

Appendix D. Lab Experiment

D1. Screenshots and Pictures

GREEN GROUP BLUE GROUP Abubakar Umar Aaron Joshua Zainab Ahmadu Mercy Paul Mary Tijani Maimuna Titus **Ruth** Aisha Shehu Isaac Hauwa Zuwaira Blessing Grace

Green and Blue groups in the Lab Game

Examples of Money Allocation Decisions

Eliciting Beliefs About the Outgroup, Example

How many people from the Green Group do you think picked Option 2? (1-10)

Coordination Game Example					
		GREEN	GROUP		
		Abubakar Zainab Tijani Aisha Hauwa	Umar Ahmadu Maimuna Shehu Zuwaira		
YOUR	٨	/atch's	YOU	R	Match's
choice		choice	earnir	ngs	earnings
Cooperate	Cc	operate	₩1,00	00	₩1,000
Cooperate	Not	Cooperate	₩50	0	N 900
Not Cooperate	Сс	operate	₩90	0	₩500
Not Cooperate	Not	Cooperate	₩75	0	₩750

Lab in the Field

Jos, Nigeria

D2. Experimental Protocol

The following is a sketch of experimental protocol that is best for illustration purposes. The protocol used in the field had multiple intermediate steps to guarantee participants got a good understanding of the games.

Introduction

The survey you are going to take today is anonymous. We won't record your name at any point, so no one will be able to link your choices to you. We will never share individual answers, only aggregate statistics, so you should feel free to answer whatever you want.

The results from this survey will be analyzed and shared only in the United States, never in Nigeria. No Nigerian organization, agency or researcher is involved.

Do you have any questions or concerns about the anonymity or confidentiality of your answers?

In this survey, there are no wrong or right answers, there is no objective to achieve. Different people prefer different things, and that is absolutely fine.

Today we will go through several activities that will together take about 50 minutes to complete. For today's survey you will receive between \$700 and \$1700, depending on the decision you and other participants in this study make. It is in your best interest to pay close attention to each question.

Your earnings will be paid to you in cash right after we finish the survey.

Module 1: Demographics

Religion, Gender, Age, Education, Migration, etc.

Module 2: Social Preferences (Money Allocation Decisions) with the First Group

Now we will proceed with the activities.

One month ago we gathered a group of people from different parts of Jos, and ages from 18 to 60. We chose twenty of them and divided them into two groups, the Blue Group and the Green Group. They participated in multiple activities, similar to the ones you are about to go through.

In these activities, you will make decisions that can make you, and them, earn extra money. Participants from the Blue Group and the Green Group that receive extra money from your decisions will never know your identity, or what your decisions were. They will only find out what their total extra earnings was, which will be affected by multiple things in addition to your decisions. Their extra earnings will be paid to them in the following days. From all the decisions you make that could earn you extra money, we will randomly pick only one and implement its payments. So you should consider each decision on its own, and not think of them as accumulating.

If you don't have any question we will now procede with the activities.

[The first group the participant plays with is picked at random. In this example, the participant will play first with the Blue group]

In this first activity you will be randomly matched with a member from the Blue Group. To keep his/her anonymity, you will exactly know who he/she is. All you will know is that he/she is a person from the Blue Group, which consists of the following ten people:

BLUE GROUP

ChristianName1	ChristianName2	ChristianName3
ChristianName4	ChristianName5	ChristianName6
ChristianName7	ChristianName8	ChristianName9
	ChristianName10	

In this task you will make a series of decisions that will make both of you earn money. However, how much money you and your match get depends only on a decision you will make. We want to understand how much of your earnings you are willing to give up in order to increase or decrease in \$500 the earnings of your match.

Remember, we will implement the payments of at most one of these decisions (picked randomly), so you should not think of them as accumulating or compensating one another. The best thing for you to do is to consider each of these decisions on its own.

[Participant go through 7 or 8 of the following decisions, following the algorithm detailed in this Appendix]

(Altruism, p=0)

Option 1 — You get \$1,000, and your match from the Blue Group gets \$0

Option 2 — You get \$1,000, and your match from the Blue Group gets \$500

(Altruism, p=50)

Option 1 — You get \$1,000, and your match from the Blue Group gets \$0

Option 2 — You get \$950, and your match from the Blue Group gets \$500

(Altruism, p=100)

Option 1 — You get №1,000, and your match from the Blue Group gets №0

Option 2 — You get №900, and your match from the Blue Group gets №500 (Altruism, p=150)

Option 1 — You get \$1,000, and your match from the Blue Group gets \$0

Option 2 — You get \$850, and your match from the Blue Group gets \$500

(Altruism, p=200)

Option 1 — You get \$1,000, and your match from the Blue Group gets \$0Option 2 — You get \$800, and your match from the Blue Group gets \$500

(Altruism, p=250)

Option 1 — You get \$1,000, and your match from the Blue Group gets \$0Option 2 — You get \$750, and your match from the Blue Group gets \$500

(Altruism, p=300)

Option 1 — You get \$1,000, and your match from the Blue Group gets \$0Option 2 — You get \$700, and your match from the Blue Group gets \$500

(Altruism, p=350)

Option 1 — You get №1,000, and your match from the Blue Group gets №0 Option 2 — You get №650, and participant from the Blue Group gets №500

(Altruism, p=400)

- Option 1 You get \$1,000, and your match from the Blue Group gets \$0
- Option 2 You get \$600, and your match from the Blue Group gets \$500

(Altruism, p=450)

Option 1 — You get \$1,000, and your match from the Blue Group gets \$0Option 2 — You get \$550, and your match from the Blue Group gets \$500

(Hate, p=0)

- Option 1 You get \$1,000, and your match from the Blue Group gets \$1,000
- Option 2 You get \$1,000, and your match from the Blue Group gets \$500

(Hate, p=50)

- Option 1 You get №1,000, and your match from the Blue Group gets №1,000
- Option 2 You get \$950, and your match from the Blue Group gets \$500

(Hate, p=100)

- Option 1 You get №1,000, and your match from the Blue Group gets №1,000
- Option 2 You get №900, and your match from the Blue Group gets №500

(Hate, p=150)

Option 1 — You get \$1,000, and your match from the Blue Group gets \$1,000Option 2 — You get \$850, and your match from the Blue Group gets \$500

(Hate, p=200)

Option 1 — You get \$1,000, and your match from the Blue Group gets \$1,000

Option 2 — You get \$800, and your match from the Blue Group gets \$500

(Hate, p=250)

Option 1 — You get \$1,000, and your match from the Blue Group gets \$1,000Option 2 — You get \$750, and your match from the Blue Group gets \$500

(Hate, p=300)

Option 1 — You get \$1,000, and your match from the Blue Group gets \$1,000

Option 2 — You get \$700, and your match from the Blue Group gets \$500

(Hate, p=350)

Option 1 — You get \$1,000, and your match from the Blue Group gets \$1,000Option 2 — You get \$650, and your match from the Blue Group gets \$500

(Hate, p=400)

Option 1 — You get №1,000, and your match from the Blue Group gets №1,000

Option 2 — You get \$600, and your match from the Blue Group gets \$500

(Hate, p=450)

Option 1 — You get \$1,000, and your match from the Blue Group gets \$1,000Option 2 — You get \$550, and your match from the Blue Group gets \$500

Module 3: Social Preferences (Money Allocation Decisions) with the Second Group

Now you are going to be matched at random with a different person, this time a member from the Green Group. Again, to keep his/her anonymity, you won't exactly know who he/she is. All we will tell you is that he/she is a member of the Green Group, which consists of the following ten people:

GREEN GROUP

MuslimName1	MuslimName2	MuslimName3
MuslimName4	MuslimName5	MuslimName6
MuslimName7	MuslimName8	MuslimName9
	MuslimName10	

As before, your task is to pick if you and your match from the Green Group get the money in Option

1 or Option 2. We want to understand how much of your earnings you are willing to give up in order to increase or decrease in \$500 the earnings of your match.

Remember, we will implement the payments of at most one of these decisions (picked randomly), so you should not think of them as accumulating or compensating one another. The best thing for you to do is to consider each of these decisions on its own.

[Participants then go again through the money allocation decisions, now with their match from the group they haven't played with (in this example, the Green Group)]

Module 4: Beliefs on the Social Preferences of the Outgroup

[In this example, the outgroup is the Green Group]

This next task is about guessing what other participants in this survey did. If you guess correctly in all questions, we will add \$500 to your earnings.

A month ago, people from the Green Group and the Blue Group went through the same activity you just went through. To each member of the Green Group we told them that we had matched them at random with someone from the Blue Group, and showed them the list of names of the Blue Group. Then, they proceeded to make the same series of decisions you just made: picking between the money in Option 1 or Option 2.

In this task, you have to guess what a member of the Green Group picked when playing with his/her match from the Blue Group.

What do you think the member of the Green Group picked when matched with a member of the Blue Group?

[Participants made guesses for at most eight of the following money allocation decision, following the same algorithm as before]

(Altruism, p=0)

Option 1 — Participant from the Green Group decided for him/her to get \$1,000, and his/her match from the Blue Group to get \$0

Option 2 — Participant from the Green Group decided for him to get \$1000, and his match from the Blue Group to get \$500

(Altruism, p=50)

Option 1 — Participant from the Green Group decided for him/her to get \$1,000, and his/her match from the Blue Group to get \$0

Option 2 — Participant from the Green Group decided for him to get №950, and his match from the

Blue Group to get №500

(Altruism, p=100)

Option 1 — Participant from the Green Group decided for him/her to get \$1,000, and his/her match from the Blue Group to get \$0

Option 2 — Participant from the Green Group decided for him to get \$900, and his match from the Blue Group to get \$500

(Altruism, p=150)

Option 1 — Participant from the Green Group decided for him/her to get \$1,000, and his/her match from the Blue Group to get \$0

Option 2 — Participant from the Green Group decided for him to get \$850, and his match from the Blue Group to get \$500

(Altruism, p=200)

Option 1 — Participant from the Green Group decided for him/her to get \$1,000, and his/her match from the Blue Group to get \$0

Option 2 — Participant from the Green Group decided for him to get \$800, and his match from the Blue Group to get \$500

(Altruism, p=250)

Option 1 — Participant from the Green Group decided for him/her to get \$1,000, and his/her match from the Blue Group to get \$0

Option 2 — Participant from the Green Group decided for him to get \$750, and his match from the Blue Group to get \$500

(Altruism, p=300)

Option 1 — Participant from the Green Group decided for him/her to get \$1,000, and his/her match from the Blue Group to get \$0

Option 2 — Participant from the Green Group decided for him to get \$700, and his match from the Blue Group to get \$500

(Altruism, p=350)

Option 1 — Participant from the Green Group decided for him/her to get \$1,000, and his/her match from the Blue Group to get \$0

Option 2 — Participant from the Green Group decided for him to get \$650, and his match from the Blue Group to get \$500

(Altruism, p=400)

Option 1 — Participant from the Green Group decided for him/her to get №1,000, and his/her match

from the Blue Group to get $\mathbb{N}0$

Option 2 — Participant from the Green Group decided for him to get \$600, and his match from the Blue Group to get \$500

(Altruism, p=450)

Option 1 — Participant from the Green Group decided for him/her to get №1,000, and his/her match from the Blue Group to get №0

Option 2 — Participant from the Green Group decided for him to get \$550, and his match from the Blue Group to get \$500

(Hate, p=0)

Option 1 — Participant from the Green Group decided for him/her to get №1,000, and his/her match from the Blue Group to get №1,000

Option 2 — Participant from the Green Group decided for him to get \$1000, and his match from the Blue Group to get \$500

(Hate, p=50)

Option 1 — Participant from the Green Group decided for him/her to get №1,000, and his/her match from the Blue Group to get №1,000

Option 2 — Participant from the Green Group decided for him to get \$950, and his match from the Blue Group to get \$500

(Hate, p=100)

Option 1 — Participant from Group B decided for him/her to get №1,000, and his/her match from the Blue Group to get №1,000

Option 2 — Participant from Group B decided for him to get \$900, and his match from the Blue Group to get \$500

(Hate, p=150)

Option 1 — Participant from the Green Group decided for him/her to get №1,000, and his/her match from the Blue Group to get №1,000

Option 2 — Participant from the Green Group decided for him to get \$850, and his match from the Blue Group to get \$500

(Hate, p=200)

Option 1 — Participant from the Green Group decided for him/her to get №1,000, and his/her match from the Blue Group to get №1,000

Option 2 — Participant from the Green Group decided for him to get \$800, and his match from the Blue Group to get \$500

(Hate, p=250)

Option 1 — Participant from the Green Group decided for him/her to get №1,000, and his/her match from the Blue Group to get №1,000

Option 2 — Participant from the Green Group decided for him to get \$750, and his match from the Blue Group to get \$500

(Hate, p=300)

Option 1 — Participant from the Green Group decided for him/her to get \$1,000, and his/her match from the Blue Group to get \$1,000

Option 2 — Participant from the Green Group decided for him to get \$700, and his match from the Blue Group to get \$500

(Hate, p=350)

Option 1 — Participant from the Green Group decided for him/her to get №1,000, and his/her match from the Blue Group to get №1,000

Option 2 — Participant from the Green Group decided for him to get \$650, and his match from the Blue Group to get \$500

(Hate, p=400)

Option 1 — Participant from the Green Group decided for him/her to get №1,000, and his/her match from the Blue Group to get №1,000

Option 2 — Participant from the Green Group decided for him to get \$600, and his match from the Blue Group to get \$500

(Hate, p=450)

Option 1 — Participant from the Green Group decided for him/her to get №1,000, and his/her match from the Blue Group to get №1,000

Option 2 — Participant from the Green Group decided for him to get \$550, and his match from the Blue Group to get \$500

[The next questions asked about their beliefs on the tail of the distribution of social preferences and the dispersion]

Now I will ask you to make a couple more guesses:

(Tail, p=100)

In the following decision, how many people from the Green Group do you think picked Option 2 when deciding how much money they and their match from the Blue Group would get? [0—10]

Option 1 — Participant from the Green Group decided for him/her to get №1,000, and his/her

match from the Blue Group to get №1,000

Option 2 — Participant from the Green Group decided for him to get \$900, and his match from the Blue Group to get \$500

(Tail, p=300)

In the following decision, how many people from the Green Group do you think picked Option 2 when deciding how much money they and their match from the Blue Group would get? [0—10]

Option 1 — Participant from the Green Group decided for him/her to get \$1,000, and his/her match from the Blue Group to get \$1,000

Option 2 — Participant from the Green Group decided for him to get \$700, and his match from the Blue Group to get \$500

(Dispersion 1)

How sure do you feel that your guesses in the past module are correct? 1—5 1 – Not sure at all; 5 – Absolutely sure.

(Dispersion 2)

How similarly do you think the choices of people from the Green Group were in this type of decisions? 1-5

1 – They all answered in the same way; 5 – They answered in all sorts of ways.

Module 5: Beliefs on the Social Preferences of the Ingroup

As in the previous task, this next task is about guessing what other participants in this survey did. If you guess correctly in all questions, we will add \$500 to your earnings.

At some point in last month session, we told the members from the Blue Group that we had matched them at random with someone from inside the Blue Group, and showed them the list of names. Then, they proceeded to make the same series of decisions you just made: picking between the money in Option 1 or Option 2.

In this task, you have to guess what a member of the Blue Group picked when playing with his/her match from inside the Blue Group.

[Here they proceed to guess the money allocation decisions of an ingroup member]

Now I will ask you to make a couple more guesses:

(Tail, p=100)

In the following decision, how many people from the Blue Group do you think picked Option 2 when deciding how much money they and their match from inside the Blue Group would get? [0—10]

Option 1 — Participant from the Blue Group decided for him/her to get №1,000, and his/her match from inside the Blue Group to get №1,000

Option 2 — Participant from Blue Group decided for him to get \$900, and his match from the inside the Blue Group to get \$500

(Tail, p=300)

In the following decision, how many people from the Blue Group do you think picked Option 2 when deciding how much money they and their match from inside the Blue Group would get? [0—10]

Option 1 — Participant from the Blue Group decided for him/her to get №1,000, and his/her match from inside the Blue Group to get №1,000

Option 2 — Participant from Group B decided for him to get \$700, and his match from inside the Blue Group to get \$500

(Dispersion 1) How sure do you feel that your guesses in the past module are correct? 1—5 1 – Not sure at all; 5 – Absolutely sure.

(Dispersion 2)

How similarly do you think the choices of people from the Blue Group were in this type of decisions? 1-5

1 - They all answered in the same way; 5 - They answered in all sorts of ways.

Module 6: Coordination Games with the Ingroup and Outgroup

In this example, the Blue Group is the ingroup and the Green Group is the outgroup]

In the next activity you and your match have to make a decision, and the monetary outcome depends on the combination of both of your decisions. I will first explain the activity to you. Then, we will go through a couple of practice rounds to make sure everything is clear. *[Give the earnings table to the participant]*

In this activity each person can choose between two actions: to Cooperate or Not Cooperate. And each person must choose their action without knowing what the other person chose.

Your Choice	Match's Choice	Your Earnings	Match's Earnings
Cooperate	Cooperate	№1,000	₹1,000
Cooperate	Not Cooperate	₩500	₩900
Not Cooperate	Cooperate	₩900	₩500
Not Cooperate	Not Cooperate	₽750	₩750

[Enumerators played multiple test games with participants to guarantee comprehension]

You are first going to go through this activity with your match from the Blue Group. We will use the answer the person from the Blue Group gave in this activity when they were matched with another member of the Blue Group.

What do you choose? [Cooperate/Not Cooperate]

Now you are going to go through this activity again, but this time your match will be from the Green Group. We will use the answer the person from the Green Group gave in this activity when they were matched with a person from the Blue Group.

What do you choose? [Cooperate/Not Cooperate]

Now you are going to go through the same activity, but this time the possible earnings for you and your match are going to be a little different. *[Give participants the new table of possible earnings]*

Your Choice	Match's Choice	Your Earnings	Match's Earnings
Cooperate	Cooperate	№1,000	№1,000
Cooperate	Not Cooperate	₩500	₩700
Not Cooperate	Cooperate	₩700	₩500
Not Cooperate	Not Cooperate	₩600	₩600

You are first going to go through this new version of the activity with your match from the Blue Group. We will use the answer the person from the Blue Group gave in this activity when they were matched with another member of the Blue Group.

What do you choose? [Cooperate/Not Cooperate]

Now you are going to go through this activity again, but this time your match will be from the Green Group. We will use the answer the person from the Green Group gave in this activity when they were matched with a person from the Blue Group.

What do you choose? [Cooperate/Not Cooperate]

Module 7: Attitudes on Policy

The following questions are about some policy proposals for the city of Jos. Our objective is just to get a sense of the possible support and downsides these policies may have. We don't necessarily think they are good or bad, we just want to get an assessment, so please feel free to answer whatever you feel. Remember, your answers are completely anonymous and will never be analyzed individually.

• Policy 1: New settlements in Jos should mix Christians and Muslims

This policy may have some possible downsides. Tell me if you agree or disagree that the following is a downside of this policy:

Christians and Muslims have different ways of living that simply cannot coexist together .[Completely Disagree / Somewhat Disagree / Somewhat Agree / Completely Agree]

Some families would not be able to trust their neighbors in these mixed settlements .[Completely Disagree / Somewhat Disagree / Somewhat Agree / Completely Agree]

• Policy 2: Schools in Jos should have a mix of Christian and Muslim children and teachers

This policy may have some possible downsides. Tell me if you agree or disagree that the following is a downside of this policy.

Christians and Muslims have different ways of educating their children that simply cannot be integrated

.[Completely Disagree / Somewhat Disagree / Somewhat Agree / Completely Agree]

The safety of our children would be at risk in these mixed schools .[Completely Disagree / Somewhat Disagree / Somewhat Agree / Completely Agree]

Module 8: Social Desirability Bias

In the following questions of the survey you will be presented situations that reflect possible perceptions about yourself. In each situation tell us if you agree or disagree with the statement.

• I sometimes feel resentful when I don't get my way [Agree/Disagree]

• On a few occasions, I have given up doing something because I thought too little of my ability [Agree/Disagree]

• I am always courteous, even to disagreeable people [Agree/Disagree]

• There have been times when I felt like rebelling against people in authority even though I knew they were right [Agree/Disagree]

- There have been occasions when I took advantage of someone [Agree/Disagree]
- I sometimes try to get even rather than forgive and forget [Agree/Disagree]
- I have never been irked when people expressed ideas very different from my own [Agree/Disagree]
- There have been times when I have been quite jealous of the good fortune of others [Agree/Disagree]
- I am sometimes irritated by people who ask favors of me [Agree/Disagree]
- I have deliberately said something that hurt someone's feelings [Agree/Disagree]

[End of the survey]

D3. Money Allocation Decisions Algorithm

To recover the social preferences I use a series of money allocation decisions. This ultimately identifies the willingness to pay a person has to either help or hurt their match in a fixed amount. To identify the parameter of interest in the least amount of questions possible, I use an algorithm that picks the next money allocation decision a participant will face depending on the previous decision the participants has made. The algorithm works as follows.

There are 20 money allocation decisions. In 10 of them, picking Option 2 implies increasing the match's payoff in 500 (altruism side). In the other 10, picking Option 2 implies decreasing the match's payoff in 500 (hate side). Within each side, each money allocation decision varies the price for Option 2 from 0 to 450, by jumps of 50.

First, all participants face the same four money allocation decisions. These are the m.a.d. of price 0 and price 50 on the altruism side and the hate side. Using these four answers I used the following rule to put people into an altruistic path or a hateful path. Within each path, the next m.a.d. participant faced was that of price 250. From this point onward, depending on the decision, the next m.a.d. presented to participant depended on the decision tree showcased below.

Rule to assign people to hate or altruism side:

Rational altruistic A0: 2 / A50: 1 / H0: 1 / H50: 1 A0: 2 / A50: 2 / H0: 1 / H50: 1

Leans altruistic

A0: 2 / A50: 2 / H0: 1 / H50: 2 A0: 2 / A50: 2 / H0: 2 / H50: 1 A0: 1 / A50: 2 / H0: 1 / H50: 1 A0: 1 / A50: 2 / H0: 2 / H50: 1

Rational hateful A0: 1 / A50: 1 / H0: 2 / H50: 1 A0: 1 / A50: 1 / H0: 2 / H50: 2

Leans hateful A0: 2 / A50: 1 / H0: 2 / H50: 2 A0: 1 / A50: 2 / H0: 2 / H50: 2 A0: 1 / A50: 1 / H0: 1 / H50: 2

A0: 2 / A50: 1 / H0: 1 / H50: 2

Rational neutral (assign randomly) A0: 1 / A50: 1 / H0: 1 / H50: 1

(Assign randomly) A0: 2 / A50: 2 / H0: 2 / H50: 2 A0: 2 / A50: 1 / H0: 2 / H50: 1 A0: 1 / A50: 2 / H0: 1 / H50: 2

Prices in the graph below:

price=100 \rightarrow p=2 price=150 \rightarrow p=3 price=200 \rightarrow p=4 price=250 \rightarrow p=5 price=300 \rightarrow p=6 price=350 \rightarrow p=7 price=400 \rightarrow p=8 price=450 \rightarrow p=9 Price Algorithm in Money Allocation Decisions

